Boris Z. Kopeliovich, Irina K. Potashnikova, Iván Schmidt
{"title":"Single-Spin Asymmetry of Neutrons in Polarized pA Collisions","authors":"Boris Z. Kopeliovich, Irina K. Potashnikova, Iván Schmidt","doi":"10.3390/physics5040068","DOIUrl":null,"url":null,"abstract":"Absorptive corrections, which are known to suppress proton-neutron transitions with a large fractional momentum z→1 in pp collisions, become dramatically strong on a nuclear target, and they push the partial cross sections of leading neutron production to the very periphery of the nucleus. The mechanism of the pion π and axial vector meson a1 interference, which successfully explains the observed single-spin asymmetry in a polarized pp→nX, is extended to the collisions of polarized protons with nuclei. When corrected for nuclear effects, it explains the observed single-spin azimuthal asymmetry of neutrons that is produced in inelastic events, which is where the nucleus violently breaks up. This single-spin asymmetry is found to be negative and nearly atomic mass number A-independent.","PeriodicalId":20136,"journal":{"name":"Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/physics5040068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Absorptive corrections, which are known to suppress proton-neutron transitions with a large fractional momentum z→1 in pp collisions, become dramatically strong on a nuclear target, and they push the partial cross sections of leading neutron production to the very periphery of the nucleus. The mechanism of the pion π and axial vector meson a1 interference, which successfully explains the observed single-spin asymmetry in a polarized pp→nX, is extended to the collisions of polarized protons with nuclei. When corrected for nuclear effects, it explains the observed single-spin azimuthal asymmetry of neutrons that is produced in inelastic events, which is where the nucleus violently breaks up. This single-spin asymmetry is found to be negative and nearly atomic mass number A-independent.