Experimental investigations of the flow phenomena in the rotor blades of the axial flow low speed compressor stage at the unstable part of the overall performance characteristic

IF 1.2 Q3 ENGINEERING, MECHANICAL Archive of Mechanical Engineering Pub Date : 2023-11-06 DOI:10.24425/ame.2008.131630
A. Witkowski, M. Ziach, M. Majkut, M. Strozik
{"title":"Experimental investigations of the flow phenomena in the rotor blades of the axial flow low speed compressor stage at the unstable part of the overall performance characteristic","authors":"A. Witkowski, M. Ziach, M. Majkut, M. Strozik","doi":"10.24425/ame.2008.131630","DOIUrl":null,"url":null,"abstract":"The paper presents experimental investigations of pressure fluctuations near the tip clearance region of the rotor blades of the axial-flow low-speed compressor stage in stable and unstable parts of the overall performance characteristic. In this investigation, unsteady pressure was measured with the use of high frequency pressure transducers mounted on the casing wall of rotor passage. The pressure signals and their frequency characteristics were analyzed during the steady-state processes, before the rotating stall, during the transition from the steady-state process to the rotating stall, and during a stabilized phenomenon of low-frequency rotating stall. As the operating point moves to the unstable region of flow characteristic, an inception of the rotating stall can be observed, which rotates with a speed of about 41.4% of the rotor speed. The results of this study confirm that in the low-speed axial compressor stage operating in a rotating stall regime there appears one stall cell that spreads over to adjacent rotor blade channels. As the flow rate is reduced further, the frequency of the rotating stall decreased to 34.8% of the rotor speed and the number of blade channels with the stall cell increases.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ame.2008.131630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 6

Abstract

The paper presents experimental investigations of pressure fluctuations near the tip clearance region of the rotor blades of the axial-flow low-speed compressor stage in stable and unstable parts of the overall performance characteristic. In this investigation, unsteady pressure was measured with the use of high frequency pressure transducers mounted on the casing wall of rotor passage. The pressure signals and their frequency characteristics were analyzed during the steady-state processes, before the rotating stall, during the transition from the steady-state process to the rotating stall, and during a stabilized phenomenon of low-frequency rotating stall. As the operating point moves to the unstable region of flow characteristic, an inception of the rotating stall can be observed, which rotates with a speed of about 41.4% of the rotor speed. The results of this study confirm that in the low-speed axial compressor stage operating in a rotating stall regime there appears one stall cell that spreads over to adjacent rotor blade channels. As the flow rate is reduced further, the frequency of the rotating stall decreased to 34.8% of the rotor speed and the number of blade channels with the stall cell increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实验研究了轴流式低速压气机级转子叶片内流动现象在不稳定部分的整体性能特征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archive of Mechanical Engineering
Archive of Mechanical Engineering ENGINEERING, MECHANICAL-
CiteScore
1.70
自引率
14.30%
发文量
0
审稿时长
15 weeks
期刊介绍: Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.
期刊最新文献
149635 Machinability investigation during turning of polyoxymethylene POM-C and optimization of cutting parameters using Pareto analysis, linear regression and genetic algorithm Effect of friction on the buckling behavior of shallow spherical shells contacting with rigid walls Energy recovery from a system with double magnet. Analytical approach Study on the relationship between structure and properties of electro-hydraulic positioning actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1