{"title":"An approach to power system harmonic analysis based on triple-line interpolation discrete Fourier transform","authors":"Ling Liu, Jinsong Zhang","doi":"10.24425/aee.2022.141670","DOIUrl":null,"url":null,"abstract":": The discrete Fourier transform (DFT) is a principal method for power system harmonic analysis. The fundamental frequency of the power system increases or decreases following load changes during normal operation. It is difficult to achieve synchronous sampling and integer period truncation in power harmonic analysis. The resulting spectrum leakage affects the accuracy of the measurement results. For this reason, a windowed interpolation DFT method for power system harmonic analysis to reduce errors was presented in this paper. First, the frequency domain expression of the windowed signal Fourier transform is analyzed. Then, the magnitude of the three discrete spectrum lines near the harmonic frequency point is used to determine the accurate position of the harmonic spectrum. Then, the calculation of the amplitude, frequency, and phase of harmonics is presented. The triple-line interpolation DFT can improve the accuracy of electrical harmonic analysis. Based on the algorithm, the practical rectification formulas were obtained by using the polynomial approximation method. The simulation results show that the fast attenuation of window function sidelobe is the key to reduce the error. The triple-line interpolation DFT based on Hanning, Blackman, Nuttall 3-Term windows has higher calculation accuracy, which can meet the requirements of electrical harmonic analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2022.141670","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
: The discrete Fourier transform (DFT) is a principal method for power system harmonic analysis. The fundamental frequency of the power system increases or decreases following load changes during normal operation. It is difficult to achieve synchronous sampling and integer period truncation in power harmonic analysis. The resulting spectrum leakage affects the accuracy of the measurement results. For this reason, a windowed interpolation DFT method for power system harmonic analysis to reduce errors was presented in this paper. First, the frequency domain expression of the windowed signal Fourier transform is analyzed. Then, the magnitude of the three discrete spectrum lines near the harmonic frequency point is used to determine the accurate position of the harmonic spectrum. Then, the calculation of the amplitude, frequency, and phase of harmonics is presented. The triple-line interpolation DFT can improve the accuracy of electrical harmonic analysis. Based on the algorithm, the practical rectification formulas were obtained by using the polynomial approximation method. The simulation results show that the fast attenuation of window function sidelobe is the key to reduce the error. The triple-line interpolation DFT based on Hanning, Blackman, Nuttall 3-Term windows has higher calculation accuracy, which can meet the requirements of electrical harmonic analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.