Structural and Electromagnetic Shielding Effectiveness of Carbon-coated Cobalt Ferrite Nanoparticles Prepared via Hydrothermal Method

Q3 Materials Science Progress in Electromagnetics Research C Pub Date : 2023-01-01 DOI:10.2528/pierc23022301
Nur Amirah Athirah binti Zaini, Iffah Zulaikha binti Azman, Ling Jin Kiong, Jose Rajan, Muhammad Hafiz Mazwir, Mohamad Ashry Jusoh
{"title":"Structural and Electromagnetic Shielding Effectiveness of Carbon-coated Cobalt Ferrite Nanoparticles Prepared via Hydrothermal Method","authors":"Nur Amirah Athirah binti Zaini, Iffah Zulaikha binti Azman, Ling Jin Kiong, Jose Rajan, Muhammad Hafiz Mazwir, Mohamad Ashry Jusoh","doi":"10.2528/pierc23022301","DOIUrl":null,"url":null,"abstract":"|The rapid advancement of communication technology has led to an increase in electromagnetic interference (EMI), or electromagnetic (EM) pollution. This is a cause for concern, as EMI can disrupt communication services, damage electronic equipment, and pose health risks. Regulatory bodies are working to develop standards for the safe use of wireless devices, but the problem of EMI is likely to continue to grow as the number of Internet of Thing (IoT) devices continues to increase. To address this issue, this study investigated the effectiveness of carbon-coated cobalt ferrite nanoparticles as a potential material for electromagnetic shielding. The synthesis of cobalt ferrite (CoFe 2 O 4 ) nanoparticles was successfully achieved using the co-precipitation method. Subsequently, a carbon coating was applied to the nanoparticles through a hydrothermal process using a 200 mL autoclave made of te(cid:13)on-lined stainless steel. This process was carried out at a temperature of 180 ◦ C for a duration of 12 hours, with a heating rate of 8 ◦ C per minute. This study examined both uncoated and carbon-coated CoFe 2 O 4 nanoparticles at various ratios of glucose to CoFe 2 O 4 (1 : 1 ; 2 : 1, and 3 : 1) using techniques such as X-ray diffraction (XRD), (cid:12)eld emission scanning electron microscopy (FESEM), and higher resolution transmission electron microscopy (HRTEM) analysis. The XRD analysis revealed distinct and well-de(cid:12)ned peaks corresponding to CoFe 2 O 4 , indicating the successful synthesis of the nanoparticles. The crystallite size of the uncoated CoFe 2 O 4 nanoparticles was measured to be 11.47 nm, while for the carbon-coated CoFe 2 O 4 , the average crystallite size was determined to be 14.15 nm through XRD analysis","PeriodicalId":20699,"journal":{"name":"Progress in Electromagnetics Research C","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pierc23022301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

|The rapid advancement of communication technology has led to an increase in electromagnetic interference (EMI), or electromagnetic (EM) pollution. This is a cause for concern, as EMI can disrupt communication services, damage electronic equipment, and pose health risks. Regulatory bodies are working to develop standards for the safe use of wireless devices, but the problem of EMI is likely to continue to grow as the number of Internet of Thing (IoT) devices continues to increase. To address this issue, this study investigated the effectiveness of carbon-coated cobalt ferrite nanoparticles as a potential material for electromagnetic shielding. The synthesis of cobalt ferrite (CoFe 2 O 4 ) nanoparticles was successfully achieved using the co-precipitation method. Subsequently, a carbon coating was applied to the nanoparticles through a hydrothermal process using a 200 mL autoclave made of te(cid:13)on-lined stainless steel. This process was carried out at a temperature of 180 ◦ C for a duration of 12 hours, with a heating rate of 8 ◦ C per minute. This study examined both uncoated and carbon-coated CoFe 2 O 4 nanoparticles at various ratios of glucose to CoFe 2 O 4 (1 : 1 ; 2 : 1, and 3 : 1) using techniques such as X-ray diffraction (XRD), (cid:12)eld emission scanning electron microscopy (FESEM), and higher resolution transmission electron microscopy (HRTEM) analysis. The XRD analysis revealed distinct and well-de(cid:12)ned peaks corresponding to CoFe 2 O 4 , indicating the successful synthesis of the nanoparticles. The crystallite size of the uncoated CoFe 2 O 4 nanoparticles was measured to be 11.47 nm, while for the carbon-coated CoFe 2 O 4 , the average crystallite size was determined to be 14.15 nm through XRD analysis
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水热法制备碳包覆钴铁氧体纳米颗粒的结构及电磁屏蔽性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Electromagnetics Research C
Progress in Electromagnetics Research C Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.70
自引率
0.00%
发文量
113
期刊最新文献
Angle Independent Metamaterial Absorber for S and C Band Application A Conformal Wearable Antenna Based on Artificial Magnetic Conductor for GPS Applications Three-dimensional Imaging Method of Target Based on Time-domain Sparse Representation of Multi-view SAR Data Compact Reconfigurable Patch Antenna for Wirelesss Applications A Novel Design Method for Unequal Coupled Line Dual-band Wilkinson Power Divider
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1