Estimation of Monthly Reference Evapotranspiration with Scarce Information Using Machine Learning in Southwestern Colombia

Q4 Earth and Planetary Sciences Meteorologica Pub Date : 2023-10-04 DOI:10.24215/1850-468xe024
Juan Camilo Triana-Madrid, Camilo Ocampo-Marulanda, Yesid Carvajal-Escobar, Wilmar Alexander Torres-López, Joshua Triana, Teresita Canchala
{"title":"Estimation of Monthly Reference Evapotranspiration with Scarce Information Using Machine Learning in Southwestern Colombia","authors":"Juan Camilo Triana-Madrid, Camilo Ocampo-Marulanda, Yesid Carvajal-Escobar, Wilmar Alexander Torres-López, Joshua Triana, Teresita Canchala","doi":"10.24215/1850-468xe024","DOIUrl":null,"url":null,"abstract":"This research aimed to identify an alternative method to estimate reference evapotranspiration (ETo) with scarce climatological information in southwestern Colombia between 1983-2017 by evaluating and comparing different machine learning techniques. The FAO Penman-Monteith (FAO-PM56) was used as the reference method and four empirical methods (Hargreaves, Thornthwaite, Cenicafé, and Turc) were assessed with five metrics to evaluate the method of best fit to FAO-PM56, root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), Nash-Sutcliffe model efficiency coefficient (NSE), and Pearson correlation coefficient (R). Three models were designed using machine learning techniques to estimate ETo, multiple linear regression (MLR), artificial neural networks (ANN), and autoregressive integrated moving average model (ARIMA). The results showed that the ARIMA-M3 model reported the best performance metrics (RMSE = 4.13 mm month-1, MAE = 3.15 mm month-1, MBE = -0.08 mm month-1, NSE = 0.96 and r = 0.98). However, it restricts in that it can only be used locally and cannot be extrapolated to other climatological stations,because it was calibrated with specific conditions (exogenous variables) and stations,unlike the ANN-M1 model, which only requires training the network for its application. This method will allow estimating ETo in places with scarce information, as vital for water management in places with much uncertainty regarding accessibility and availability.","PeriodicalId":37823,"journal":{"name":"Meteorologica","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24215/1850-468xe024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to identify an alternative method to estimate reference evapotranspiration (ETo) with scarce climatological information in southwestern Colombia between 1983-2017 by evaluating and comparing different machine learning techniques. The FAO Penman-Monteith (FAO-PM56) was used as the reference method and four empirical methods (Hargreaves, Thornthwaite, Cenicafé, and Turc) were assessed with five metrics to evaluate the method of best fit to FAO-PM56, root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), Nash-Sutcliffe model efficiency coefficient (NSE), and Pearson correlation coefficient (R). Three models were designed using machine learning techniques to estimate ETo, multiple linear regression (MLR), artificial neural networks (ANN), and autoregressive integrated moving average model (ARIMA). The results showed that the ARIMA-M3 model reported the best performance metrics (RMSE = 4.13 mm month-1, MAE = 3.15 mm month-1, MBE = -0.08 mm month-1, NSE = 0.96 and r = 0.98). However, it restricts in that it can only be used locally and cannot be extrapolated to other climatological stations,because it was calibrated with specific conditions (exogenous variables) and stations,unlike the ANN-M1 model, which only requires training the network for its application. This method will allow estimating ETo in places with scarce information, as vital for water management in places with much uncertainty regarding accessibility and availability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀缺信息的哥伦比亚西南部月参考蒸散量机器学习估算
本研究旨在通过评估和比较不同的机器学习技术,确定一种替代方法,在1983-2017年期间利用哥伦比亚西南部稀缺的气候信息估计参考蒸散发(ETo)。采用FAO Penman-Monteith模型(FAO- pm56)作为参考方法,采用5个指标对4种实证方法(Hargreaves、Thornthwaite、cenicaf和Turc)进行评估,以评价最适合FAO- pm56模型的方法:均方根误差(RMSE)、平均绝对误差(MAE)、平均偏倚误差(MBE)、Nash-Sutcliffe模型效率系数(NSE)和Pearson相关系数(R)。利用机器学习技术设计了3个模型来估计ETo。多元线性回归(MLR)、人工神经网络(ANN)和自回归综合移动平均模型(ARIMA)。结果表明,ARIMA-M3模型报告的性能指标最佳(RMSE = 4.13 mm -1个月,MAE = 3.15 mm -1个月,MBE = -0.08 mm -1个月,NSE = 0.96, r = 0.98)。然而,它的局限性在于,它只能在当地使用,不能外推到其他气候站,因为它是用特定条件(外生变量)和台站校准的,不像ANN-M1模型,它只需要训练网络就可以应用。这种方法将允许在信息匮乏的地方估计ETo,这对于在可及性和可用性方面存在很大不确定性的地方的水管理至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meteorologica
Meteorologica Earth and Planetary Sciences-Atmospheric Science
CiteScore
1.00
自引率
0.00%
发文量
8
审稿时长
24 weeks
期刊介绍: Meteorologica is the semestral journal of Centro Argentino de Meteorólogos, which is published since 1970 and serves on the Core of Argentine Scientific Journals since 2005. Meteorologica publishes original papers in the field of atmospheric sciences and oceanography written in Spanish or English. Theoretical and applied research description, dataset description, extensive reviews about a particular topic related with atmospheric sciences or oceanography are within the journal scope. Papers must be original and concise. Meteorologica publishes one volume (two issues) per year.
期刊最新文献
Variabilidad del caudal del río Neuquén en las fases de su ciclo anual y su relación con índices climáticos Climatología de sequías de rápido desarrollo en la Pampa húmeda Argentina Estimation of Monthly Reference Evapotranspiration with Scarce Information Using Machine Learning in Southwestern Colombia Evaluación de diferentes estrategias para la generación de sistemas de predicción por conjuntos regionales de escala convectiva en un caso de precipitación intensa Prediction of Evapotranspiration in the Pampean Plain from CERES Satellite Products and Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1