Juan Camilo Triana-Madrid, Camilo Ocampo-Marulanda, Yesid Carvajal-Escobar, Wilmar Alexander Torres-López, Joshua Triana, Teresita Canchala
{"title":"Estimation of Monthly Reference Evapotranspiration with Scarce Information Using Machine Learning in Southwestern Colombia","authors":"Juan Camilo Triana-Madrid, Camilo Ocampo-Marulanda, Yesid Carvajal-Escobar, Wilmar Alexander Torres-López, Joshua Triana, Teresita Canchala","doi":"10.24215/1850-468xe024","DOIUrl":null,"url":null,"abstract":"This research aimed to identify an alternative method to estimate reference evapotranspiration (ETo) with scarce climatological information in southwestern Colombia between 1983-2017 by evaluating and comparing different machine learning techniques. The FAO Penman-Monteith (FAO-PM56) was used as the reference method and four empirical methods (Hargreaves, Thornthwaite, Cenicafé, and Turc) were assessed with five metrics to evaluate the method of best fit to FAO-PM56, root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), Nash-Sutcliffe model efficiency coefficient (NSE), and Pearson correlation coefficient (R). Three models were designed using machine learning techniques to estimate ETo, multiple linear regression (MLR), artificial neural networks (ANN), and autoregressive integrated moving average model (ARIMA). The results showed that the ARIMA-M3 model reported the best performance metrics (RMSE = 4.13 mm month-1, MAE = 3.15 mm month-1, MBE = -0.08 mm month-1, NSE = 0.96 and r = 0.98). However, it restricts in that it can only be used locally and cannot be extrapolated to other climatological stations,because it was calibrated with specific conditions (exogenous variables) and stations,unlike the ANN-M1 model, which only requires training the network for its application. This method will allow estimating ETo in places with scarce information, as vital for water management in places with much uncertainty regarding accessibility and availability.","PeriodicalId":37823,"journal":{"name":"Meteorologica","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24215/1850-468xe024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
This research aimed to identify an alternative method to estimate reference evapotranspiration (ETo) with scarce climatological information in southwestern Colombia between 1983-2017 by evaluating and comparing different machine learning techniques. The FAO Penman-Monteith (FAO-PM56) was used as the reference method and four empirical methods (Hargreaves, Thornthwaite, Cenicafé, and Turc) were assessed with five metrics to evaluate the method of best fit to FAO-PM56, root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), Nash-Sutcliffe model efficiency coefficient (NSE), and Pearson correlation coefficient (R). Three models were designed using machine learning techniques to estimate ETo, multiple linear regression (MLR), artificial neural networks (ANN), and autoregressive integrated moving average model (ARIMA). The results showed that the ARIMA-M3 model reported the best performance metrics (RMSE = 4.13 mm month-1, MAE = 3.15 mm month-1, MBE = -0.08 mm month-1, NSE = 0.96 and r = 0.98). However, it restricts in that it can only be used locally and cannot be extrapolated to other climatological stations,because it was calibrated with specific conditions (exogenous variables) and stations,unlike the ANN-M1 model, which only requires training the network for its application. This method will allow estimating ETo in places with scarce information, as vital for water management in places with much uncertainty regarding accessibility and availability.
MeteorologicaEarth and Planetary Sciences-Atmospheric Science
CiteScore
1.00
自引率
0.00%
发文量
8
审稿时长
24 weeks
期刊介绍:
Meteorologica is the semestral journal of Centro Argentino de Meteorólogos, which is published since 1970 and serves on the Core of Argentine Scientific Journals since 2005. Meteorologica publishes original papers in the field of atmospheric sciences and oceanography written in Spanish or English. Theoretical and applied research description, dataset description, extensive reviews about a particular topic related with atmospheric sciences or oceanography are within the journal scope. Papers must be original and concise. Meteorologica publishes one volume (two issues) per year.