Numerical study of influence of mould width on freestanding adjustable combination electromagnetic brake in continuous casting mould

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Metallurgical Research & Technology Pub Date : 2023-01-01 DOI:10.1051/metal/2023066
Zhuang Li, Lintao Zhang, Engang Wang
{"title":"Numerical study of influence of mould width on freestanding adjustable combination electromagnetic brake in continuous casting mould","authors":"Zhuang Li, Lintao Zhang, Engang Wang","doi":"10.1051/metal/2023066","DOIUrl":null,"url":null,"abstract":"A mathematical model was developed to describe the behavior of liquid steel flow and the steel/slag interface at a constant casting throughput in moulds of different widths. The impact of mould width (MW) on the liquid steel flow and the steel/slag interface was analyzed. Further it was examined whether a freestanding adjustable combination electromagnetic brake (FAC-EMBr) was conducive to controlling and improving the liquid steel flow. The results indicate that increasing MW decreased impact strength of the jet, upward backflow, and surface velocity––this was beneficial for reducing the meniscus height. Adjustment of the current intensity would enable the control of the behaviour of the liquid steel flow and meniscus, as well as reduce the dependence on matching the electromagnetic parameters and process parameters. This simplifies the operational process. As the MW increased to 1600 mm, an excessive input current of the vertical pole ( I V = 250 A) significantly decreased the upward backflow velocity; this was not conducive to melting the mould powder.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/metal/2023066","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A mathematical model was developed to describe the behavior of liquid steel flow and the steel/slag interface at a constant casting throughput in moulds of different widths. The impact of mould width (MW) on the liquid steel flow and the steel/slag interface was analyzed. Further it was examined whether a freestanding adjustable combination electromagnetic brake (FAC-EMBr) was conducive to controlling and improving the liquid steel flow. The results indicate that increasing MW decreased impact strength of the jet, upward backflow, and surface velocity––this was beneficial for reducing the meniscus height. Adjustment of the current intensity would enable the control of the behaviour of the liquid steel flow and meniscus, as well as reduce the dependence on matching the electromagnetic parameters and process parameters. This simplifies the operational process. As the MW increased to 1600 mm, an excessive input current of the vertical pole ( I V = 250 A) significantly decreased the upward backflow velocity; this was not conducive to melting the mould powder.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结晶器宽度对连铸结晶器独立式可调组合电磁制动器影响的数值研究
建立了一个数学模型,描述了在不同宽度的铸模中恒定铸造产量下钢液流动和钢/渣界面的行为。分析了模具宽度对钢液流动和钢渣界面的影响。进一步研究了独立式可调组合电磁制动器(face - embr)是否有利于控制和改善钢液流量。结果表明,增加MW会降低射流的冲击强度、向上回流和表面速度,这有利于降低半月板高度。调节电流强度可以控制钢液流动和半月板的行为,并减少对匹配电磁参数和工艺参数的依赖。这简化了操作过程。当MW增加到1600 mm时,垂直极输入电流过大(I V = 250 A)显著降低了向上回流速度;这不利于模具粉末的熔化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
期刊最新文献
Bend forming of aluminum alloy integral panel: a review Kinetic and mechanical properties of boronized AISI 1020 steel with Baybora-2 powder The method of reducing energy consumption in large blast furnace smelting by increasing top pressure Distribution behavior and deportation of arsenic in copper top-blown smelting process Effect of slag properties and non-uniform bottom blowing gas supply mode on fluid flow and mixing behavior in converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1