Electromagnetic Force and Momentum in Classical Macroscopic Dipolar Media

Arthur D. Yaghjian
{"title":"Electromagnetic Force and Momentum in Classical Macroscopic Dipolar Media","authors":"Arthur D. Yaghjian","doi":"10.2528/pierb23071801","DOIUrl":null,"url":null,"abstract":"Using realistic classical models of microscopic electric-charge electric dipoles and electric-current (Amperian) magnetic dipoles, it is proven that the Einstein-Laub macroscopic electromagnetic force on a macroscopic-continuum volume of these classical dipoles equals the sum of the microscopic electromagnetic forces on the discrete classical dipoles in that volume. The internal (hidden) momentum of the discrete Amperian magnetic dipoles is rigorously derived and properly included in the determination of the macroscopic force from the spatial averaging of the microscopic forces. Consequently, the Abraham/Einstein-Laub rather than the Minkowski macroscopic electromagnetic-field momentum density gives the total microscopic electromagnetic-field momentum in that volume. The kinetic momentum is found for the volume of the macroscopic continuum from Newton's relativistic equation of motion. It is shown that the difference between the kinetic and canonical momenta in a volume of the macroscopic continuum is equal to the sum of the\"hidden electromagnetic momenta\"within the electric-current magnetic dipoles and within hypothetical magnetic-current electric dipoles replacing the electric-charge electric dipoles in the classical macroscopic continuum. To obtain the correct unambiguous value of the force on a volume inside the continuum from the force-momentum expression, it is mandatory that the surface of that volume be hypothetically separated from the rest of the continuum by a thin free-space shell. Two definitive experiments performed in the past with time varying fields and forces are shown to conclusively confirm the Einstein-Laub/Abraham formulation over the Minkowski formulation.","PeriodicalId":20829,"journal":{"name":"Progress In Electromagnetics Research B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress In Electromagnetics Research B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pierb23071801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Using realistic classical models of microscopic electric-charge electric dipoles and electric-current (Amperian) magnetic dipoles, it is proven that the Einstein-Laub macroscopic electromagnetic force on a macroscopic-continuum volume of these classical dipoles equals the sum of the microscopic electromagnetic forces on the discrete classical dipoles in that volume. The internal (hidden) momentum of the discrete Amperian magnetic dipoles is rigorously derived and properly included in the determination of the macroscopic force from the spatial averaging of the microscopic forces. Consequently, the Abraham/Einstein-Laub rather than the Minkowski macroscopic electromagnetic-field momentum density gives the total microscopic electromagnetic-field momentum in that volume. The kinetic momentum is found for the volume of the macroscopic continuum from Newton's relativistic equation of motion. It is shown that the difference between the kinetic and canonical momenta in a volume of the macroscopic continuum is equal to the sum of the"hidden electromagnetic momenta"within the electric-current magnetic dipoles and within hypothetical magnetic-current electric dipoles replacing the electric-charge electric dipoles in the classical macroscopic continuum. To obtain the correct unambiguous value of the force on a volume inside the continuum from the force-momentum expression, it is mandatory that the surface of that volume be hypothetically separated from the rest of the continuum by a thin free-space shell. Two definitive experiments performed in the past with time varying fields and forces are shown to conclusively confirm the Einstein-Laub/Abraham formulation over the Minkowski formulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经典宏观偶极介质中的电磁力和动量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress In Electromagnetics Research B
Progress In Electromagnetics Research B Engineering-Electrical and Electronic Engineering
CiteScore
2.70
自引率
0.00%
发文量
14
期刊介绍: Progress In Electromagnetics Research (PIER) B publishes peer-reviewed original, comprehensive and tutorial review articles on all aspects of electromagnetic theory and applications. It is a new journal in 2008, and freely available to all readers via the Internet. Manuscripts submitted to PIER B must not have been submitted simultaneously to other journals. Authors are solely responsible for the factual accuracy of their articles, and all articles are understood to have received clearance(s) for publication.
期刊最新文献
The Influence of Contrast and Temporal Expansion on the Marching-on-in-Time Contrast Current Density Volume Integral Equation Multi-attribute Synergetic Decision-making Algorithm for 5G Integrated Heterogeneous Wireless Network Quantum Illumination Radar Using Polarization States of Photons in Atmosphere: Quantum Information Approach Sensorless Control of Interior Permanent Magnet Synchronous Motor with Triangular Transform Current Self-demodulation in the Estimating d-q Axis Optimizing 1D Dielectric Electromagnetic Bandgap (D-EBG) Structures Using Multistage Genetic Algorithm (MS-GA) and Considering Parameter Variations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1