Dose-dependent cytotoxicity against lung cancer cells via green synthesized ZnFe2O4/cellulose nanocomposites

IF 3.2 3区 化学 Q2 POLYMER SCIENCE e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0113
Alka Singh, Nakshatra Bahadur Singh, Kanu Priya, Richa Tomar, Mohammed Saeed Al-Qahtani, Mohammad Tarique Imam, Ziyad Saeed Almalki, Waleed Al Abdulmonem, Krishna Kumar Yadav, Hyun-Kyung Park
{"title":"Dose-dependent cytotoxicity against lung cancer cells via green synthesized ZnFe<sub>2</sub>O<sub>4</sub>/cellulose nanocomposites","authors":"Alka Singh, Nakshatra Bahadur Singh, Kanu Priya, Richa Tomar, Mohammed Saeed Al-Qahtani, Mohammad Tarique Imam, Ziyad Saeed Almalki, Waleed Al Abdulmonem, Krishna Kumar Yadav, Hyun-Kyung Park","doi":"10.1515/epoly-2023-0113","DOIUrl":null,"url":null,"abstract":"Abstract Cancers are complicated sicknesses that happen because of many different things going wrong in cells, and as they get worse, the cells undergo many changes one after another. Nanomedicine is a new way to treat diseases like cancer. Tiny particles called nanoparticles have special properties that can help to treat diseases better than regular treatments. These particles are very small but have a lot of surface area, can carry different drugs, and can be designed to target specific areas. They can move around the body, go into cells, and release drugs slowly. Because of these benefits, nanoparticles could be better for cancer treatment. In this continuous research, we present a simple technique for the quick and single-step synthesis of ZnFe 2 O 4 /cellulose nanocomposites, employing the polymer cellulose. This method is not only cost-effective but also environment friendly. Scanning electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and the ultraviolet-visible (UV) spectrum were all used to examine the morphological, structural, and electrical properties of ZnFe 2 O 4 /cellulose nanocomposites. The nanocomposite derived from UV-DRS exhibits an optical energy bandgap of 1.8 eV. The mechanical strength of the composites gradually increases as ZnFe 2 O 4 is added to the cellulose polymer matrix. These findings propose a straightforward and innovative approach to produce ZnFe 2 O 4 /cellulose nanocomposites that can serve as functional biomaterials. In addition, the ZnFe 2 O 4 /cellulose nanocomposite exhibits decreased antioxidant activity compared to ascorbic acid. ZnFe 2 O 4 /cellulose nanocomposite was found to have an IC 50 of 49.64 g·mL −1 . With an IC 50 value of 55.91 g·mL −1 , the synthesized ZnFe 2 O 4 /cellulose nanocomposites demonstrate significant cytotoxicity in a dose-dependent manner against the lung cancer cell lines A549. In conclusion, nanocomposites are potential materials for usage in biomedical applications due to their affordable production and mild magnetic sensitivity.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"5 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0113","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Cancers are complicated sicknesses that happen because of many different things going wrong in cells, and as they get worse, the cells undergo many changes one after another. Nanomedicine is a new way to treat diseases like cancer. Tiny particles called nanoparticles have special properties that can help to treat diseases better than regular treatments. These particles are very small but have a lot of surface area, can carry different drugs, and can be designed to target specific areas. They can move around the body, go into cells, and release drugs slowly. Because of these benefits, nanoparticles could be better for cancer treatment. In this continuous research, we present a simple technique for the quick and single-step synthesis of ZnFe 2 O 4 /cellulose nanocomposites, employing the polymer cellulose. This method is not only cost-effective but also environment friendly. Scanning electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and the ultraviolet-visible (UV) spectrum were all used to examine the morphological, structural, and electrical properties of ZnFe 2 O 4 /cellulose nanocomposites. The nanocomposite derived from UV-DRS exhibits an optical energy bandgap of 1.8 eV. The mechanical strength of the composites gradually increases as ZnFe 2 O 4 is added to the cellulose polymer matrix. These findings propose a straightforward and innovative approach to produce ZnFe 2 O 4 /cellulose nanocomposites that can serve as functional biomaterials. In addition, the ZnFe 2 O 4 /cellulose nanocomposite exhibits decreased antioxidant activity compared to ascorbic acid. ZnFe 2 O 4 /cellulose nanocomposite was found to have an IC 50 of 49.64 g·mL −1 . With an IC 50 value of 55.91 g·mL −1 , the synthesized ZnFe 2 O 4 /cellulose nanocomposites demonstrate significant cytotoxicity in a dose-dependent manner against the lung cancer cell lines A549. In conclusion, nanocomposites are potential materials for usage in biomedical applications due to their affordable production and mild magnetic sensitivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绿色合成ZnFe2O4/纤维素纳米复合材料对肺癌细胞的剂量依赖性细胞毒性研究
癌症是一种复杂的疾病,它的发生是因为细胞中许多不同的东西出了问题,随着病情的恶化,细胞会一个接一个地发生许多变化。纳米医学是一种治疗癌症等疾病的新方法。被称为纳米颗粒的微小颗粒具有特殊的特性,可以比常规治疗更好地帮助治疗疾病。这些颗粒非常小,但具有很大的表面积,可以携带不同的药物,并且可以针对特定区域进行设计。它们可以在体内移动,进入细胞,缓慢地释放药物。由于这些好处,纳米颗粒可能更适合癌症治疗。在这项持续的研究中,我们提出了一种简单的方法,利用聚合物纤维素快速、一步合成znfe2o4 /纤维素纳米复合材料。这种方法不仅经济实惠,而且对环境友好。采用扫描电子显微镜、粉末x射线衍射、傅里叶变换红外光谱和紫外可见光谱对znfe2o4 /纤维素纳米复合材料的形貌、结构和电学性能进行了表征。UV-DRS制备的纳米复合材料具有1.8 eV的光能带隙。随着znfe2o4的加入,复合材料的机械强度逐渐提高。这些发现提出了一种直接和创新的方法来生产可以作为功能性生物材料的znfe2o4 /纤维素纳米复合材料。此外,与抗坏血酸相比,znfe2o4 /纤维素纳米复合材料的抗氧化活性降低。znfe2o4 /纤维素纳米复合材料的ic50为49.64 g·mL−1。合成的znfe2o4 /纤维素纳米复合材料的ic50值为55.91 g·mL−1,对肺癌细胞株A549表现出明显的剂量依赖性细胞毒性。综上所述,纳米复合材料由于其低廉的生产成本和温和的磁敏感性,在生物医学应用中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
期刊最新文献
Design, synthesis, and characterization of novel copolymer gel particles for water-plugging applications Influence of 1,1′-Azobis(cyclohexanezonitrile) on the thermo-oxidative aging performance of diolefin elastomers Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters Effect of tannic acid chelating treatment on thermo-oxidative aging property of natural rubber Normal-hexane treatment on PET-based waste fiber depolymerization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1