Multimode optomechanics with a two-dimensional optomechanical crystal

IF 5.4 1区 物理与天体物理 Q1 OPTICS APL Photonics Pub Date : 2023-11-01 DOI:10.1063/5.0170883
Guilhem Madiot, Marcus Albrechtsen, Søren Stobbe, Clivia M. Sotomayor-Torres, Guillermo Arregui
{"title":"Multimode optomechanics with a two-dimensional optomechanical crystal","authors":"Guilhem Madiot, Marcus Albrechtsen, Søren Stobbe, Clivia M. Sotomayor-Torres, Guillermo Arregui","doi":"10.1063/5.0170883","DOIUrl":null,"url":null,"abstract":"Chip-scale multimode optomechanical systems have unique benefits for sensing, metrology, and quantum technologies relative to their single-mode counterparts. Slot-mode optomechanical crystals enable sideband resolution and large optomechanical couplings of a single optical cavity to two microwave-frequency mechanical modes. Still, previous implementations have been limited to nanobeam geometries, whose effective quantum cooperativity at ultralow temperatures is limited by their low thermal conductance. In this work, we design and experimentally demonstrate a two-dimensional mechanical–optical–mechanical (MOM) platform that dispersively couples a slow-light slot-guided photonic-crystal waveguide mode and two slow-sound ∼ 7 GHz phononic wire modes localized in physically distinct regions. We first demonstrate optomechanical interactions in long waveguide sections, unveiling acoustic group velocities below 800 m/s, and then move on to mode-gap adiabatic heterostructure cavities with a tailored mechanical frequency difference. Through optomechanical spectroscopy, we demonstrate optical quality factors Q ∼ 105, vacuum optomechanical coupling rates, go/2π, of 1.5 MHz, and dynamical back-action effects beyond the single-mode picture. At a larger power and adequate laser-cavity detuning, we demonstrate regenerative optomechanical oscillations involving a single mechanical mode, extending to both mechanical modes through modulation of the input laser drive at their frequency difference. This work constitutes an important advance toward engineering MOM systems with nearly degenerate mechanical modes as part of hybrid multipartite quantum systems.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"39 8","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0170883","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Chip-scale multimode optomechanical systems have unique benefits for sensing, metrology, and quantum technologies relative to their single-mode counterparts. Slot-mode optomechanical crystals enable sideband resolution and large optomechanical couplings of a single optical cavity to two microwave-frequency mechanical modes. Still, previous implementations have been limited to nanobeam geometries, whose effective quantum cooperativity at ultralow temperatures is limited by their low thermal conductance. In this work, we design and experimentally demonstrate a two-dimensional mechanical–optical–mechanical (MOM) platform that dispersively couples a slow-light slot-guided photonic-crystal waveguide mode and two slow-sound ∼ 7 GHz phononic wire modes localized in physically distinct regions. We first demonstrate optomechanical interactions in long waveguide sections, unveiling acoustic group velocities below 800 m/s, and then move on to mode-gap adiabatic heterostructure cavities with a tailored mechanical frequency difference. Through optomechanical spectroscopy, we demonstrate optical quality factors Q ∼ 105, vacuum optomechanical coupling rates, go/2π, of 1.5 MHz, and dynamical back-action effects beyond the single-mode picture. At a larger power and adequate laser-cavity detuning, we demonstrate regenerative optomechanical oscillations involving a single mechanical mode, extending to both mechanical modes through modulation of the input laser drive at their frequency difference. This work constitutes an important advance toward engineering MOM systems with nearly degenerate mechanical modes as part of hybrid multipartite quantum systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模光力学与二维光力学晶体
芯片级多模光机械系统相对于单模系统在传感、计量和量子技术方面具有独特的优势。隙模光机械晶体能够实现边带分辨率和单个光腔与两个微波频率机械模式的大光机械耦合。然而,以前的实现仅限于纳米束几何形状,其在超低温下的有效量子协同性受到其低导热性的限制。在这项工作中,我们设计并实验展示了一个二维机械-光学-机械(MOM)平台,该平台色散耦合了一个慢光槽波导模式和两个位于物理不同区域的慢声~ 7 GHz声子线模式。我们首先展示了长波导截面中的光力学相互作用,揭示了低于800 m/s的声群速度,然后转向具有定制机械频率差的模隙绝热异质结构腔。通过光力学光谱,我们证明了光学质量因子Q ~ 105,真空光力学耦合率go/2π为1.5 MHz,以及单模图像之外的动态反作用效应。在更大的功率和足够的激光腔失谐下,我们展示了涉及单一机械模式的再生光机械振荡,通过调制输入激光驱动器的频率差扩展到两种机械模式。这项工作构成了工程上具有近简并力学模式的MOM系统作为混合多部量子系统的一部分的重要进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
期刊最新文献
Impact of polarization pulling on optimal spectrometer design for stimulated Brillouin scattering microscopy. Advancements in optical biosensing techniques: From fundamentals to future prospects The manipulation of spin angular momentum for binary circular Airy beam during propagation A tutorial on optical photothermal infrared (O-PTIR) microscopy Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1