S. G. Pushkov, L. L. Lovitsky, O. Yu. Gorshkova, I. V. Malakhova
{"title":"Methods for Parametric Identifi cation of Systematic Errors of Onboard Measurements of Aerodynamic Angles in Aircraft Flight Tests","authors":"S. G. Pushkov, L. L. Lovitsky, O. Yu. Gorshkova, I. V. Malakhova","doi":"10.17587/mau.24.598-607","DOIUrl":null,"url":null,"abstract":"Methods of the actual values of the angles of attack and slip determination in the technology of air data systems estimation using satellite navigation systems during aircraft flight tests of are stated. Also methods of parametric identification of mathematical models of on-board aerodynamic angles measurements errors are presented. The technology has been developed and implemented in the practice of flight tests at Flight Research Institute. The technology shows high efficiency of solving tasks of air data on-board systems, vertical separation systems, flight performance and takeoff and landing characteristics estimation in flight tests. The technology covers a wide range of issues of aerometric measurements, many of which have already been published. Here, attention is paid to measurements of aerodynamic angles. The features of determining the angles of attack and slip using data from air data systems, satellite and inertial navigation systems are shown. Equations for determining the angles of attack and slip during testing, factors of measurement errors, the structure of the mathematical model of the aerodynamic errors of the angle of attack on-board measurements are presented in a stationary approximation. Algorithms for solving problems in steady and unsteady modes of flight, takeoff and landing are considered. The completeness of the solution for the wind speed vector is noted. Estimates of methodological errors in determining aerodynamic angles using the technology are made. Compliance with modern requirements is showing. The effectiveness of the technology is confirmed by the materials of flight tests of a short-range aircraft. Typical examples of test materials presentation, features of measurements depending on the type of test mode, aerodynamic influence factors are shown.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"336 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekhatronika, Avtomatizatsiya, Upravlenie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/mau.24.598-607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Methods of the actual values of the angles of attack and slip determination in the technology of air data systems estimation using satellite navigation systems during aircraft flight tests of are stated. Also methods of parametric identification of mathematical models of on-board aerodynamic angles measurements errors are presented. The technology has been developed and implemented in the practice of flight tests at Flight Research Institute. The technology shows high efficiency of solving tasks of air data on-board systems, vertical separation systems, flight performance and takeoff and landing characteristics estimation in flight tests. The technology covers a wide range of issues of aerometric measurements, many of which have already been published. Here, attention is paid to measurements of aerodynamic angles. The features of determining the angles of attack and slip using data from air data systems, satellite and inertial navigation systems are shown. Equations for determining the angles of attack and slip during testing, factors of measurement errors, the structure of the mathematical model of the aerodynamic errors of the angle of attack on-board measurements are presented in a stationary approximation. Algorithms for solving problems in steady and unsteady modes of flight, takeoff and landing are considered. The completeness of the solution for the wind speed vector is noted. Estimates of methodological errors in determining aerodynamic angles using the technology are made. Compliance with modern requirements is showing. The effectiveness of the technology is confirmed by the materials of flight tests of a short-range aircraft. Typical examples of test materials presentation, features of measurements depending on the type of test mode, aerodynamic influence factors are shown.