{"title":"Study on O3 Variations in Nanjing and the Surrounding Source Analysis","authors":"Jiaqi Shi, Jinhu Wang, Yuqing Zhang, Dinyuan Liang, Anhong Xiao","doi":"10.1155/2023/5519469","DOIUrl":null,"url":null,"abstract":"To understand the transport patterns and major sources of ozone (O3) in Nanjing, this study carried out the 48-hour backward trajectories of air masses in Nanjing from March 2021 to March 2022, based on the HYSPLIT backward trajectory model driven by GDAS global reanalysis data. The primary transmission routes and putative source locations of O3 pollution in Nanjing were determined through the integration of trajectory clustering analysis, potential source contribution function (PSCF), and concentration-weighted trajectory (CWT) analysis with meteorological data and O3 concentration data. The results showed that the high O3 concentrations and exceedance rates in Nanjing were in late spring and early summer, with the highest in June. The diurnal variation of O3 concentrations in all seasons exhibited a single peak with a maximum from 13:00 to 16:00. The southeasterly flow passing through Zhenjiang, Changzhou, Wuxi, Suzhou, and Shanghai dominated the O3 pollution in Nanjing. The PSCF and CWT presented a high consistency of O3 potential sources in Nanjing. Zhenjiang, Ma’anshan, Changzhou, Wuxi, Suzhou, and Huzhou were identified as the main potential source regions of O3 pollution in Nanjing. This study provides accurate theoretical references for regional joint prevention and control of O3 pollution in Nanjing.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"20 3","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5519469","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To understand the transport patterns and major sources of ozone (O3) in Nanjing, this study carried out the 48-hour backward trajectories of air masses in Nanjing from March 2021 to March 2022, based on the HYSPLIT backward trajectory model driven by GDAS global reanalysis data. The primary transmission routes and putative source locations of O3 pollution in Nanjing were determined through the integration of trajectory clustering analysis, potential source contribution function (PSCF), and concentration-weighted trajectory (CWT) analysis with meteorological data and O3 concentration data. The results showed that the high O3 concentrations and exceedance rates in Nanjing were in late spring and early summer, with the highest in June. The diurnal variation of O3 concentrations in all seasons exhibited a single peak with a maximum from 13:00 to 16:00. The southeasterly flow passing through Zhenjiang, Changzhou, Wuxi, Suzhou, and Shanghai dominated the O3 pollution in Nanjing. The PSCF and CWT presented a high consistency of O3 potential sources in Nanjing. Zhenjiang, Ma’anshan, Changzhou, Wuxi, Suzhou, and Huzhou were identified as the main potential source regions of O3 pollution in Nanjing. This study provides accurate theoretical references for regional joint prevention and control of O3 pollution in Nanjing.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.