{"title":"Fabrication of flat stainless steel substrates with improved oxidation behavior for metal-supported solid oxide cells using aqueous tape casting","authors":"Yifei Yan, Olivera Kesler","doi":"10.1007/s43939-023-00063-5","DOIUrl":null,"url":null,"abstract":"Abstract An aqueous tape casting procedure was developed and optimized to fabricate thick, flat tapes for use as porous stainless-steel substrates for metal-supported solid oxide cells (MS-SOCs). Curling tape is one of the main challenges when using aqueous based slurry formation. This work demonstrated that the sedimentation problem can be solved by increasing solid loading rather than adding excessive binder to raise viscosity. The effect of various casting surfaces on tape curling was also investigated. Materials that allow easy tape release resulted in flatter tapes once the water was evaporated. In addition, substrate oxidation resistance at high temperature was evaluated with respect to starting powder size, sintering extent, and pore former types. High sintering extent that removes or encloses the porosity between steel particles while retaining porosity left by pore formers can effectively prevent breakaway oxidation due to local chromium depletion. Carbon residue in the steel substrates from the slurry organic content can be decreased when formulating the slurry to prevent Cr-rich phase formation in the steel, which severely compromises the substrate oxidation resistance and ductility. By dwelling the substrate in high purity hydrogen, the sensitization can be reversed, but more detailed investigation of the reaction dynamics is needed. By combining the strategies described, this work produced crack-free, flat, 400–500 μm thick stainless steel substrates with 28.7 vol% porosity and improved oxidation resistance compared to previous substrates fabricated by dry pressing of fine powders.","PeriodicalId":34625,"journal":{"name":"Discover Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43939-023-00063-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract An aqueous tape casting procedure was developed and optimized to fabricate thick, flat tapes for use as porous stainless-steel substrates for metal-supported solid oxide cells (MS-SOCs). Curling tape is one of the main challenges when using aqueous based slurry formation. This work demonstrated that the sedimentation problem can be solved by increasing solid loading rather than adding excessive binder to raise viscosity. The effect of various casting surfaces on tape curling was also investigated. Materials that allow easy tape release resulted in flatter tapes once the water was evaporated. In addition, substrate oxidation resistance at high temperature was evaluated with respect to starting powder size, sintering extent, and pore former types. High sintering extent that removes or encloses the porosity between steel particles while retaining porosity left by pore formers can effectively prevent breakaway oxidation due to local chromium depletion. Carbon residue in the steel substrates from the slurry organic content can be decreased when formulating the slurry to prevent Cr-rich phase formation in the steel, which severely compromises the substrate oxidation resistance and ductility. By dwelling the substrate in high purity hydrogen, the sensitization can be reversed, but more detailed investigation of the reaction dynamics is needed. By combining the strategies described, this work produced crack-free, flat, 400–500 μm thick stainless steel substrates with 28.7 vol% porosity and improved oxidation resistance compared to previous substrates fabricated by dry pressing of fine powders.
期刊介绍:
Discover Materials is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is a broad, open access journal publishing research from across all fields of materials research.
Discover Materials covers all areas where materials are activators for innovation and disruption, providing cutting-edge research findings to researchers, academicians, students, and engineers. It considers the whole value chain, ranging from fundamental and applied research to the synthesis, characterisation, modelling and application of materials.
Moreover, we especially welcome papers connected to so-called ‘green materials’, which offer unique properties including natural abundance, low toxicity, economically affordable and versatility in terms of physical and chemical properties. They are the activators of an eco-sustainable economy serving all innovation sectors. Indeed, they can be applied in numerous scientific and technological applications including energy, electronics, building, construction and infrastructure, materials science and engineering applications and pollution management and technology. For instance, biomass-based materials can be developed as a source for biodiesel and bioethanol production, and transformed into advanced functionalized materials for applications such as the transformation of chitin into chitosan which can be further used for biomedicine, biomaterials and tissue engineering applications. Green materials for electronics are also a key vector concerning the integration of novel devices on conformable, flexible substrates with free-of-form surfaces for innovative product development. We also welcome new developments grounded on Artificial Intelligence to model, design and simulate materials and to gain new insights into materials by discovering new patterns and relations in the data.