Fabrication of flat stainless steel substrates with improved oxidation behavior for metal-supported solid oxide cells using aqueous tape casting

Yifei Yan, Olivera Kesler
{"title":"Fabrication of flat stainless steel substrates with improved oxidation behavior for metal-supported solid oxide cells using aqueous tape casting","authors":"Yifei Yan, Olivera Kesler","doi":"10.1007/s43939-023-00063-5","DOIUrl":null,"url":null,"abstract":"Abstract An aqueous tape casting procedure was developed and optimized to fabricate thick, flat tapes for use as porous stainless-steel substrates for metal-supported solid oxide cells (MS-SOCs). Curling tape is one of the main challenges when using aqueous based slurry formation. This work demonstrated that the sedimentation problem can be solved by increasing solid loading rather than adding excessive binder to raise viscosity. The effect of various casting surfaces on tape curling was also investigated. Materials that allow easy tape release resulted in flatter tapes once the water was evaporated. In addition, substrate oxidation resistance at high temperature was evaluated with respect to starting powder size, sintering extent, and pore former types. High sintering extent that removes or encloses the porosity between steel particles while retaining porosity left by pore formers can effectively prevent breakaway oxidation due to local chromium depletion. Carbon residue in the steel substrates from the slurry organic content can be decreased when formulating the slurry to prevent Cr-rich phase formation in the steel, which severely compromises the substrate oxidation resistance and ductility. By dwelling the substrate in high purity hydrogen, the sensitization can be reversed, but more detailed investigation of the reaction dynamics is needed. By combining the strategies described, this work produced crack-free, flat, 400–500 μm thick stainless steel substrates with 28.7 vol% porosity and improved oxidation resistance compared to previous substrates fabricated by dry pressing of fine powders.","PeriodicalId":34625,"journal":{"name":"Discover Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43939-023-00063-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract An aqueous tape casting procedure was developed and optimized to fabricate thick, flat tapes for use as porous stainless-steel substrates for metal-supported solid oxide cells (MS-SOCs). Curling tape is one of the main challenges when using aqueous based slurry formation. This work demonstrated that the sedimentation problem can be solved by increasing solid loading rather than adding excessive binder to raise viscosity. The effect of various casting surfaces on tape curling was also investigated. Materials that allow easy tape release resulted in flatter tapes once the water was evaporated. In addition, substrate oxidation resistance at high temperature was evaluated with respect to starting powder size, sintering extent, and pore former types. High sintering extent that removes or encloses the porosity between steel particles while retaining porosity left by pore formers can effectively prevent breakaway oxidation due to local chromium depletion. Carbon residue in the steel substrates from the slurry organic content can be decreased when formulating the slurry to prevent Cr-rich phase formation in the steel, which severely compromises the substrate oxidation resistance and ductility. By dwelling the substrate in high purity hydrogen, the sensitization can be reversed, but more detailed investigation of the reaction dynamics is needed. By combining the strategies described, this work produced crack-free, flat, 400–500 μm thick stainless steel substrates with 28.7 vol% porosity and improved oxidation resistance compared to previous substrates fabricated by dry pressing of fine powders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用水带铸造技术制备具有改善氧化性能的金属支撑固体氧化物电池用平面不锈钢衬底
开发并优化了一种水带铸造工艺,用于制造厚而平的带,用于金属支撑固体氧化物电池(ms - soc)的多孔不锈钢衬底。卷绕带是使用水基泥浆地层时的主要挑战之一。这项工作表明,沉降问题可以通过增加固体负荷来解决,而不是添加过多的粘合剂来提高粘度。研究了不同铸造表面对卷材卷边的影响。一旦水分蒸发,容易释放胶带的材料会使胶带变平。此外,基材在高温下的抗氧化性根据起始粉末尺寸、烧结程度和孔隙形成类型进行了评估。烧结程度高,既能消除或封闭钢颗粒之间的孔隙,又能保留成孔者留下的孔隙,可有效防止因局部铬耗尽而导致的分离氧化。当配制浆料时,可以降低钢基体中碳渣的有机含量,以防止钢中富cr相的形成,这严重损害了基体的抗氧化性和延展性。通过将底物置于高纯氢中,敏化作用可以逆转,但需要对反应动力学进行更详细的研究。通过结合上述策略,该工作生产了无裂纹、平坦、400-500 μm厚的不锈钢衬底,其孔隙率为28.7 vol%,与以前通过细粉末干压制备的衬底相比,其抗氧化性得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Discover Materials
Discover Materials materials-
CiteScore
3.30
自引率
0.00%
发文量
10
审稿时长
23 days
期刊介绍: Discover Materials is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is a broad, open access journal publishing research from across all fields of materials research. Discover Materials covers all areas where materials are activators for innovation and disruption, providing cutting-edge research findings to researchers, academicians, students, and engineers. It considers the whole value chain, ranging from fundamental and applied research to the synthesis, characterisation, modelling and application of materials. Moreover, we especially welcome papers connected to so-called ‘green materials’, which offer unique properties including natural abundance, low toxicity, economically affordable and versatility in terms of physical and chemical properties. They are the activators of an eco-sustainable economy serving all innovation sectors. Indeed, they can be applied in numerous scientific and technological applications including energy, electronics, building, construction and infrastructure, materials science and engineering applications and pollution management and technology. For instance, biomass-based materials can be developed as a source for biodiesel and bioethanol production, and transformed into advanced functionalized materials for applications such as the transformation of chitin into chitosan which can be further used for biomedicine, biomaterials and tissue engineering applications. Green materials for electronics are also a key vector concerning the integration of novel devices on conformable, flexible substrates with free-of-form surfaces for innovative product development. We also welcome new developments grounded on Artificial Intelligence to model, design and simulate materials and to gain new insights into materials by discovering new patterns and relations in the data.
期刊最新文献
Microstructural analysis and densification of ordinary Portland cement mortars incorporated with minimal nano-TiO2: intermixing and surface coating on both fresh and hardened surfaces Product classes characterization at micro-scale level applied to granular wastes fractions < 20 mm: a case-study Pressureless sintering kinetics analysis of Ti3SiC2 and Ti2AlC powdered MAX phases Understanding the explosion risk presented by ammonium nitrate and aluminium home-made explosives detonated as surface charges in hexahedral main charge containers Per-acetic acid effect on separation of banana fiber and their dyeing with natural dyes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1