Efficient Focus Autoencoders for Fast Autonomous Flight in Intricate Wild Scenarios

IF 4.4 2区 地球科学 Q1 REMOTE SENSING Drones Pub Date : 2023-09-27 DOI:10.3390/drones7100609
Kaiyu Hu, Huanlin Li, Jiafan Zhuang, Zhifeng Hao, Zhun Fan
{"title":"Efficient Focus Autoencoders for Fast Autonomous Flight in Intricate Wild Scenarios","authors":"Kaiyu Hu, Huanlin Li, Jiafan Zhuang, Zhifeng Hao, Zhun Fan","doi":"10.3390/drones7100609","DOIUrl":null,"url":null,"abstract":"The autonomous navigation of aerial robots in unknown and complex outdoor environments is a challenging problem that typically requires planners to generate collision-free trajectories based on human expert rules for fast navigation. Presently, aerial robots suffer from high latency in acquiring environmental information, which limits the control strategies that the vehicle can implement. In this study, we proposed the SAC_FAE algorithm for high-speed navigation in complex environments using deep reinforcement learning (DRL) policies. Our approach consisted of a soft actor–critic (SAC) algorithm and a focus autoencoder (FAE). Our end-to-end DRL navigation policy enabled a flying robot to efficiently accomplish navigation tasks without prior map information by relying solely on the front-end depth frames and its own pose information. The proposed algorithm outperformed existing trajectory-based optimization approaches at flight speeds exceeding 3 m/s in multiple testing environments, which demonstrates its effectiveness and efficiency.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"26 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100609","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

The autonomous navigation of aerial robots in unknown and complex outdoor environments is a challenging problem that typically requires planners to generate collision-free trajectories based on human expert rules for fast navigation. Presently, aerial robots suffer from high latency in acquiring environmental information, which limits the control strategies that the vehicle can implement. In this study, we proposed the SAC_FAE algorithm for high-speed navigation in complex environments using deep reinforcement learning (DRL) policies. Our approach consisted of a soft actor–critic (SAC) algorithm and a focus autoencoder (FAE). Our end-to-end DRL navigation policy enabled a flying robot to efficiently accomplish navigation tasks without prior map information by relying solely on the front-end depth frames and its own pose information. The proposed algorithm outperformed existing trajectory-based optimization approaches at flight speeds exceeding 3 m/s in multiple testing environments, which demonstrates its effectiveness and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于复杂野外环境下快速自主飞行的高效对焦自编码器
在未知和复杂的室外环境中,空中机器人的自主导航是一个具有挑战性的问题,通常需要规划者根据人类专家规则生成无碰撞轨迹,以实现快速导航。目前,空中机器人在获取环境信息时存在较大的延迟,这限制了飞行器所能实施的控制策略。在本研究中,我们使用深度强化学习(DRL)策略提出了用于复杂环境下高速导航的SAC_FAE算法。我们的方法包括一个软演员评论家(SAC)算法和一个焦点自动编码器(FAE)。我们的端到端DRL导航策略使飞行机器人能够在没有事先地图信息的情况下,仅依靠前端深度帧和自身姿态信息,有效地完成导航任务。在多个测试环境下,该算法在飞行速度超过3 m/s的情况下优于现有的基于轨迹的优化方法,验证了算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drones
Drones Engineering-Aerospace Engineering
CiteScore
5.60
自引率
18.80%
发文量
331
期刊最新文献
Firefighting Drone Configuration and Scheduling for Wildfire Based on Loss Estimation and Minimization Wind Tunnel Balance Measurements of Bioinspired Tails for a Fixed Wing MAV Three-Dimensional Indoor Positioning Scheme for Drone with Fingerprint-Based Deep-Learning Classifier Blockchain-Enabled Infection Sample Collection System Using Two-Echelon Drone-Assisted Mechanism Joint Trajectory Design and Resource Optimization in UAV-Assisted Caching-Enabled Networks with Finite Blocklength Transmissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1