Controlling for spatial confounding and spatial interference in causal inference: modelling insights from a computational experiment

IF 2.7 Q1 GEOGRAPHY Annals of GIS Pub Date : 2023-09-27 DOI:10.1080/19475683.2023.2257788
Tyler D. Hoffman, Peter Kedron
{"title":"Controlling for spatial confounding and spatial interference in causal inference: modelling insights from a computational experiment","authors":"Tyler D. Hoffman, Peter Kedron","doi":"10.1080/19475683.2023.2257788","DOIUrl":null,"url":null,"abstract":"Causal inference is a rapidly growing field of statistics that applies logical reasoning to statistical inference to estimate causal relationships. Spatial data poses several problems in causal inference – namely, spatial confounding and interference – that require different strategies when designing causal models. In order to obtain valid inferences, existing nonspatial causal models must adjust for such spatial problems. Given the blossoming literature on spatial causal inference, this research analyzes the usage of spatial causal models under a priori knowledge and a priori ignorance of the spatial structure of data. We synthesize existing research directions in noncausal spatial modelling and causal nonspatial modelling by assessing the performance of 28 spatial causal models across 16 spatial data scenarios. We used ordinary least squares (OLS) models, conditional autoregressive (CAR) models, and jointly CAR models for outcome and treatment variables as the basis for the tested models, equipping them with a variety of spatial causal adjustments. We compare our results to principles of noncausal spatial modelling and investigate their implications for spatial causal modelling. Specifically, we show that noncausal spatial modelling guidance holds in causal spatial modelling workflows and demonstrate how researchers can leverage noncausal theory to great effect. In parallel, we introduce the spycause Python package of spatial causal models and data simulators to facilitate the widespread use of these models and to enable reproduction and extension of our work.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"82 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2023.2257788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Causal inference is a rapidly growing field of statistics that applies logical reasoning to statistical inference to estimate causal relationships. Spatial data poses several problems in causal inference – namely, spatial confounding and interference – that require different strategies when designing causal models. In order to obtain valid inferences, existing nonspatial causal models must adjust for such spatial problems. Given the blossoming literature on spatial causal inference, this research analyzes the usage of spatial causal models under a priori knowledge and a priori ignorance of the spatial structure of data. We synthesize existing research directions in noncausal spatial modelling and causal nonspatial modelling by assessing the performance of 28 spatial causal models across 16 spatial data scenarios. We used ordinary least squares (OLS) models, conditional autoregressive (CAR) models, and jointly CAR models for outcome and treatment variables as the basis for the tested models, equipping them with a variety of spatial causal adjustments. We compare our results to principles of noncausal spatial modelling and investigate their implications for spatial causal modelling. Specifically, we show that noncausal spatial modelling guidance holds in causal spatial modelling workflows and demonstrate how researchers can leverage noncausal theory to great effect. In parallel, we introduce the spycause Python package of spatial causal models and data simulators to facilitate the widespread use of these models and to enable reproduction and extension of our work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制因果推理中的空间混淆和空间干扰:来自计算实验的建模见解
因果推理是统计学中一个快速发展的领域,它将逻辑推理应用于统计推理来估计因果关系。空间数据在因果推理中提出了几个问题,即空间混淆和干扰,在设计因果模型时需要不同的策略。为了获得有效的推理,现有的非空间因果模型必须针对这些空间问题进行调整。鉴于空间因果推理的文献大量出现,本研究分析了在先验知识和对数据空间结构先验无知的情况下空间因果模型的使用。通过对16个空间数据场景下28个空间因果模型的性能评估,综合了非因果空间建模和因果非空间建模的现有研究方向。我们使用普通最小二乘(OLS)模型、条件自回归(CAR)模型以及结果变量和治疗变量的联合CAR模型作为检验模型的基础,并对其进行各种空间因果调整。我们将我们的结果与非因果空间建模的原理进行了比较,并研究了它们对空间因果建模的影响。具体来说,我们展示了非因果空间建模指导在因果空间建模工作流中成立,并展示了研究人员如何利用非因果理论发挥巨大作用。同时,我们引入spycause Python包的空间因果模型和数据模拟器,以促进这些模型的广泛使用,并使我们的工作能够复制和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of GIS
Annals of GIS Multiple-
CiteScore
8.30
自引率
2.00%
发文量
31
期刊最新文献
Zero watermarking algorithm for BIM data based on distance partitioning and local feature Controlling for spatial confounding and spatial interference in causal inference: modelling insights from a computational experiment Application of GIS and fuzzy sets to small-scale site suitability assessment for extensive brackish water aquaculture Revealing intra-urban hierarchical spatial structure through representation learning by combining road network abstraction model and taxi trajectory data The time- and distance-decay effects of hurricane relevancy on social media: an empirical study of three hurricanes in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1