P. Qaderi-Baban, M.B. Menhaj, M. Dosaranian-Moghadam, A. Fakharian
{"title":"Intelligent multi-agent system for DC microgrid energy coordination control","authors":"P. Qaderi-Baban, M.B. Menhaj, M. Dosaranian-Moghadam, A. Fakharian","doi":"10.24425/bpasts.2019.130183","DOIUrl":null,"url":null,"abstract":"In this paper, an energy coordination control method based on intelligent multi-agent systems (MAS) is proposed for energy management and voltage control of a DC microgrid. The structure of the DC microgrid is designed to realize the mathematical modeling of photovoltaic cells, fuel cells and batteries. A two-layer intelligent MAS is designed for energy coordination control: grid-connection and islanding of a DC microgrid is combined with energy management of PV cells, fuel cells, loads and batteries. In the hidden layer and the output layer of the proposed neural network there are 17 and 8 neurons, respectively, and the “logsig” activation function is used for the neurons in the network. Eight kinds of feature quantities and 13 different actions are taken as the input and output parameters of the neural network from the micro-source and the load, and the as the control center agent’s decision-makers. The feasibility of the proposed intelligent multi-agent energy coordination control strategy is verified by MATLAB/Simulink simulation, and three types of examples are analyzed after increasing the load. The simulation results show that the proposed scheme exhibits better performance than the traditional approaches.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"3 6","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/bpasts.2019.130183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, an energy coordination control method based on intelligent multi-agent systems (MAS) is proposed for energy management and voltage control of a DC microgrid. The structure of the DC microgrid is designed to realize the mathematical modeling of photovoltaic cells, fuel cells and batteries. A two-layer intelligent MAS is designed for energy coordination control: grid-connection and islanding of a DC microgrid is combined with energy management of PV cells, fuel cells, loads and batteries. In the hidden layer and the output layer of the proposed neural network there are 17 and 8 neurons, respectively, and the “logsig” activation function is used for the neurons in the network. Eight kinds of feature quantities and 13 different actions are taken as the input and output parameters of the neural network from the micro-source and the load, and the as the control center agent’s decision-makers. The feasibility of the proposed intelligent multi-agent energy coordination control strategy is verified by MATLAB/Simulink simulation, and three types of examples are analyzed after increasing the load. The simulation results show that the proposed scheme exhibits better performance than the traditional approaches.
期刊介绍:
The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:
Artificial and Computational Intelligence,
Biomedical Engineering and Biotechnology,
Civil Engineering,
Control, Informatics and Robotics,
Electronics, Telecommunication and Optoelectronics,
Mechanical and Aeronautical Engineering, Thermodynamics,
Material Science and Nanotechnology,
Power Systems and Power Electronics.