{"title":"Efficient non-orthogonal multiple access with simultaneous user association and resource allocation","authors":"S.H. HosseiniNazhad, M. Shafieezadeh, A. Ghanbari","doi":"10.24425/bpasts.2019.129664","DOIUrl":null,"url":null,"abstract":". In this study, the concepts of simultaneous user association and resource allocation in non-orthogonal multiple access systems have been investigated. Subscribers are randomly distributed in them. In the paper, a novel cooperative energy harvesting model is introduced so that user equipment near to the base stations acts as relay for further subscribers. In order to consider the local limitations of alternative energy resources, it was assumed that alternative energy would be shared among the base stations by means of the dynamic grid network. In this architecture, non-orthogonal resource allocation and user association frameworks should be reconfigured because conventional schemes use orthogonal multiple access. Hence, this paper suggests a novel approach to joint optimum cooperative power allocation and user association techniques to achieve a maximum degree of energy efficiency for the whole system in which the quality of experience parameters are assumed to be bounded during multi-cell multicast sessions. The model was also modified to develop joint multi-layered resource control and user association that can distinguish the service pattern in cooperative energy heterogeneous systems with non-orthogonal multiple access to obtain more resource optimality than in the current approaches. The effectiveness of the suggested approach is confirmed by numerical results. Also, the results reveal that non-orthogonal multiple access can provide greater energy efficiency than the conventional orthogonal multiple access approaches such as e.g. the MAX-SINR scheme.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"4 4","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/bpasts.2019.129664","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
. In this study, the concepts of simultaneous user association and resource allocation in non-orthogonal multiple access systems have been investigated. Subscribers are randomly distributed in them. In the paper, a novel cooperative energy harvesting model is introduced so that user equipment near to the base stations acts as relay for further subscribers. In order to consider the local limitations of alternative energy resources, it was assumed that alternative energy would be shared among the base stations by means of the dynamic grid network. In this architecture, non-orthogonal resource allocation and user association frameworks should be reconfigured because conventional schemes use orthogonal multiple access. Hence, this paper suggests a novel approach to joint optimum cooperative power allocation and user association techniques to achieve a maximum degree of energy efficiency for the whole system in which the quality of experience parameters are assumed to be bounded during multi-cell multicast sessions. The model was also modified to develop joint multi-layered resource control and user association that can distinguish the service pattern in cooperative energy heterogeneous systems with non-orthogonal multiple access to obtain more resource optimality than in the current approaches. The effectiveness of the suggested approach is confirmed by numerical results. Also, the results reveal that non-orthogonal multiple access can provide greater energy efficiency than the conventional orthogonal multiple access approaches such as e.g. the MAX-SINR scheme.
期刊介绍:
The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:
Artificial and Computational Intelligence,
Biomedical Engineering and Biotechnology,
Civil Engineering,
Control, Informatics and Robotics,
Electronics, Telecommunication and Optoelectronics,
Mechanical and Aeronautical Engineering, Thermodynamics,
Material Science and Nanotechnology,
Power Systems and Power Electronics.