Review on Strain Monitoring of Aircraft Using Optical Fibre Sensor

Monica Murthy N, Priyanka Desai Kakade
{"title":"Review on Strain Monitoring of Aircraft Using Optical Fibre Sensor","authors":"Monica Murthy N, Priyanka Desai Kakade","doi":"10.24425/ijet.2022.141282","DOIUrl":null,"url":null,"abstract":"— Structural health monitoring of aircraft assures safety, integrity and reduces cost-related concerns by reducing the number of times maintenance is required. Under aerodynamic loading, aircraft is subjected to strain, in turn causing damage and breakdown. This paper presents a review of experimental works, which focuses on monitoring strain of various parts of aircraft using optical fibre sensors. In addition, this paper presents a discussion and review on different types of optical fibre sensors used for structural health monitoring (SHM) of aircraft. However, the focus of this paper is on fibre bragg gratings (FBGs) for strain monitoring. Here, FBGs are discussed in detail because they have proved to be most viable and assuring technology in this field. In most cases of strain monitoring, load conditioning and management employs finite element method (FEM). However, more effort is still required in finding the accurate positions in real time where the sensors can be placed in the structure and responds under complex deformation.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"9 13","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2022.141282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

— Structural health monitoring of aircraft assures safety, integrity and reduces cost-related concerns by reducing the number of times maintenance is required. Under aerodynamic loading, aircraft is subjected to strain, in turn causing damage and breakdown. This paper presents a review of experimental works, which focuses on monitoring strain of various parts of aircraft using optical fibre sensors. In addition, this paper presents a discussion and review on different types of optical fibre sensors used for structural health monitoring (SHM) of aircraft. However, the focus of this paper is on fibre bragg gratings (FBGs) for strain monitoring. Here, FBGs are discussed in detail because they have proved to be most viable and assuring technology in this field. In most cases of strain monitoring, load conditioning and management employs finite element method (FEM). However, more effort is still required in finding the accurate positions in real time where the sensors can be placed in the structure and responds under complex deformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光纤传感器的飞机应变监测研究进展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Optimization of Animal Detection in Thermal Images Using YOLO Architecture Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications 147684 147700
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1