Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm

{"title":"Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm","authors":"","doi":"10.24425/ijet.2023.147705","DOIUrl":null,"url":null,"abstract":"— In this paper, Recursive Least Square (RLS) and Affine Projection (AP) adaptive filters are designed using Xilinx System Generator and implemented on the Spartan6 xc6slx16-2csg324 FPGA platform. FPGA platform utilizes the non-restoring division algorithm and the COordinate Rotation DIgital Computer (CORDIC) division algorithm to perform the division task of the RLS and AP adaptive filters. The Non-restoring division algorithm demonstrates efficient performance in terms of convergence speed and signal-to-noise ratio. In contrast, the CORDIC division algorithm requires 31 cycles for division initialization, whereas the non-restoring algorithm initializes division in just one cycle. To validate the effectiveness of the proposed filters, a set of ten ECG records from the BIT-MIT database is used to test their ability to remove Power Line Interference (PLI) noise from the ECG signal. The proposed adaptive filters are compared with various adaptive algorithms in terms of Signal-to-Noise Ratio (SNR), convergence speed, residual noise, steady-state Mean Square Error (MSE), and complexity.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"5 47","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2023.147705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

— In this paper, Recursive Least Square (RLS) and Affine Projection (AP) adaptive filters are designed using Xilinx System Generator and implemented on the Spartan6 xc6slx16-2csg324 FPGA platform. FPGA platform utilizes the non-restoring division algorithm and the COordinate Rotation DIgital Computer (CORDIC) division algorithm to perform the division task of the RLS and AP adaptive filters. The Non-restoring division algorithm demonstrates efficient performance in terms of convergence speed and signal-to-noise ratio. In contrast, the CORDIC division algorithm requires 31 cycles for division initialization, whereas the non-restoring algorithm initializes division in just one cycle. To validate the effectiveness of the proposed filters, a set of ten ECG records from the BIT-MIT database is used to test their ability to remove Power Line Interference (PLI) noise from the ECG signal. The proposed adaptive filters are compared with various adaptive algorithms in terms of Signal-to-Noise Ratio (SNR), convergence speed, residual noise, steady-state Mean Square Error (MSE), and complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非恢复除法算法的递推最小二乘自适应滤波器的高效FPGA实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Optimization of Animal Detection in Thermal Images Using YOLO Architecture Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications 147684 147700
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1