Spline local basis methods for nonparametric density estimation

IF 11 Q1 STATISTICS & PROBABILITY Statistics Surveys Pub Date : 2023-01-01 DOI:10.1214/23-ss142
J. Lars Kirkby, Álvaro Leitao, Duy Nguyen
{"title":"Spline local basis methods for nonparametric density estimation","authors":"J. Lars Kirkby, Álvaro Leitao, Duy Nguyen","doi":"10.1214/23-ss142","DOIUrl":null,"url":null,"abstract":"This work reviews the literature on spline local basis methods for non-parametric density estimation. Particular attention is paid to B-spline density estimators which have experienced recent advances in both theory and methodology. These estimators occupy a very interesting space in statistics, which lies aptly at the cross-section of numerous statistical frameworks. New insights, experiments, and analyses are presented to cast the various estimation concepts in a unified context, while parallels and contrasts are drawn to the more familiar contexts of kernel density estimation. Unlike kernel density estimation, the study of local basis estimation is not yet fully mature, and this work also aims to highlight the gaps in existing literature which merit further investigation.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"62 1","pages":"0"},"PeriodicalIF":11.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ss142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

This work reviews the literature on spline local basis methods for non-parametric density estimation. Particular attention is paid to B-spline density estimators which have experienced recent advances in both theory and methodology. These estimators occupy a very interesting space in statistics, which lies aptly at the cross-section of numerous statistical frameworks. New insights, experiments, and analyses are presented to cast the various estimation concepts in a unified context, while parallels and contrasts are drawn to the more familiar contexts of kernel density estimation. Unlike kernel density estimation, the study of local basis estimation is not yet fully mature, and this work also aims to highlight the gaps in existing literature which merit further investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非参数密度估计的样条局部基方法
本文综述了非参数密度估计的样条局部基方法。特别注意的是最近在理论和方法上都取得进展的b样条密度估计。这些估计器在统计学中占据了一个非常有趣的空间,它恰好位于许多统计框架的横截面上。提出了新的见解、实验和分析,将各种估计概念置于统一的上下文中,同时将其与更熟悉的核密度估计上下文中进行类比和对比。与核密度估计不同,局部基估计的研究尚未完全成熟,本工作也旨在突出现有文献中值得进一步研究的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
期刊最新文献
White noise testing for functional time series Spline local basis methods for nonparametric density estimation Core-periphery structure in networks: A statistical exposition Kronecker-structured covariance models for multiway data A brief and understandable guide to pseudo-random number generators and specific models for security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1