{"title":"Combined loading performance analysis of gasketed bolted flange joints with emphasis on bolt scattering","authors":"None Kamran Khan, Israr Ahmed","doi":"10.15282/jmes.17.3.2023.3.0757","DOIUrl":null,"url":null,"abstract":"Gasketed bolted flange joints (GBFJ) are commonly used in various industries however, their failure could result in significant losses not only in terms of financial but human life as well. Most of the work present on the performance of the GBFJ involves simplified assumptions by neglecting the effect of bolt scatter. Also, there is a paucity of studies investigating the sealing performance of GBFJ under combined thermal transient and structural loading. In the present study, two different flange sizes of ANSI B16.5 pressure class 900 (4in. and 6in.) are evaluated, using a detailed three-dimensional finite element analysis (FEA). ASME bolt tightening scheme was applied for the preloading of the bolts. Higher bolts and gasket stresses were observed in the case of 6in. flange joint. Also, greater variation in bolt stresses (up to 18 % of the target value) was observed for the 6 in. model which may be due to higher number of bolts resulting in greater scattering phenomena. Both models were found to be safe under the structural loading. However, large relaxation in stresses was observed at high bulk temperature. The gasket stress in 4in. flange model was observed to be less than the minimum seating stress (69 MPa) at temperatures greater than 300 °C implying possible leakage. However, stresses in the 6in. model stayed within the safe limit throughout the thermal and structural loading due to higher bolt target stresses, resulting in its proper seating even at higher temperatures.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"87 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.3.2023.3.0757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gasketed bolted flange joints (GBFJ) are commonly used in various industries however, their failure could result in significant losses not only in terms of financial but human life as well. Most of the work present on the performance of the GBFJ involves simplified assumptions by neglecting the effect of bolt scatter. Also, there is a paucity of studies investigating the sealing performance of GBFJ under combined thermal transient and structural loading. In the present study, two different flange sizes of ANSI B16.5 pressure class 900 (4in. and 6in.) are evaluated, using a detailed three-dimensional finite element analysis (FEA). ASME bolt tightening scheme was applied for the preloading of the bolts. Higher bolts and gasket stresses were observed in the case of 6in. flange joint. Also, greater variation in bolt stresses (up to 18 % of the target value) was observed for the 6 in. model which may be due to higher number of bolts resulting in greater scattering phenomena. Both models were found to be safe under the structural loading. However, large relaxation in stresses was observed at high bulk temperature. The gasket stress in 4in. flange model was observed to be less than the minimum seating stress (69 MPa) at temperatures greater than 300 °C implying possible leakage. However, stresses in the 6in. model stayed within the safe limit throughout the thermal and structural loading due to higher bolt target stresses, resulting in its proper seating even at higher temperatures.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.