The analysis of grid independence study in continuous disperse of MQL delivery system

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of Mechanical Engineering and Sciences Pub Date : 2023-09-27 DOI:10.15282/jmes.17.3.2023.5.0759
Zulaika Zulkifli, None N.H. Abdul Halim, None Z.H. Solihin, None J. Saedon, None A.A. Ahmad, None A.H. Abdullah, None N. Abdul Raof, None M. Abdul Hadi
{"title":"The analysis of grid independence study in continuous disperse of MQL delivery system","authors":"Zulaika Zulkifli, None N.H. Abdul Halim, None Z.H. Solihin, None J. Saedon, None A.A. Ahmad, None A.H. Abdullah, None N. Abdul Raof, None M. Abdul Hadi","doi":"10.15282/jmes.17.3.2023.5.0759","DOIUrl":null,"url":null,"abstract":"A sustainable cutting method of Minimum Quantity Lubricant (MQL) was introduced to promote lubrication effect and improve machinability. However, its performances are very dependent on the effectiveness of its mist to penetrate deep into the cutting zone. Optimizing the MQL system requires massive experimental work that increases cost and time. Therefore, this study conducts Computational Fluid Dynamic (CFD) analysis using ANSYS Fluent and focuses on the grid independence study in dispersed-continuous phase of MQL delivery system. The main aim is to identify the best mesh model that influences the accuracy of the CFD model. The analysis proposed two different unstructured grid cell elements of quadrilateral and triangular that were only applicable for 2-dimensional fluid flow in CFD. The unstructured grid was controlled with three different mesh quality factors such as Relevance Center, Smoothing, and Span Angle Center at coarse /low, medium, and fine /high. The results showed that the best mesh quality for quadrilateral was at 60,000 nodes number and coarse mesh, whereas the triangular was at 90,000 nodes number and coarse mesh. Both combinations resulted the most consistent and reliable result when compared with past studies. However, this study decided to choose quadrilateral cell element with 60,000 nodes number and coarse mesh as it is considered to be sufficient to provide accurate and reliable result as well as practical in terms of computational time for the MQL model in CFD analysis.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"117 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.3.2023.5.0759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A sustainable cutting method of Minimum Quantity Lubricant (MQL) was introduced to promote lubrication effect and improve machinability. However, its performances are very dependent on the effectiveness of its mist to penetrate deep into the cutting zone. Optimizing the MQL system requires massive experimental work that increases cost and time. Therefore, this study conducts Computational Fluid Dynamic (CFD) analysis using ANSYS Fluent and focuses on the grid independence study in dispersed-continuous phase of MQL delivery system. The main aim is to identify the best mesh model that influences the accuracy of the CFD model. The analysis proposed two different unstructured grid cell elements of quadrilateral and triangular that were only applicable for 2-dimensional fluid flow in CFD. The unstructured grid was controlled with three different mesh quality factors such as Relevance Center, Smoothing, and Span Angle Center at coarse /low, medium, and fine /high. The results showed that the best mesh quality for quadrilateral was at 60,000 nodes number and coarse mesh, whereas the triangular was at 90,000 nodes number and coarse mesh. Both combinations resulted the most consistent and reliable result when compared with past studies. However, this study decided to choose quadrilateral cell element with 60,000 nodes number and coarse mesh as it is considered to be sufficient to provide accurate and reliable result as well as practical in terms of computational time for the MQL model in CFD analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MQL连续分散输送系统的网格独立性分析研究
为了提高润滑效果和可加工性,提出了一种最小润滑量可持续切削方法。然而,它的性能很大程度上取决于它的雾渗透到切割区深处的有效性。优化MQL系统需要大量的实验工作,增加了成本和时间。因此,本研究利用ANSYS Fluent进行计算流体动力学(CFD)分析,重点研究MQL输送系统分散-连续相位的网格独立性。其主要目的是确定影响CFD模型精度的最佳网格模型。分析提出了仅适用于CFD中二维流体流动的四边形和三角形两种不同的非结构化网格单元单元。在粗/低、中、精/高三种不同的网格质量因子下,采用相关度中心、平滑度中心和跨度角中心对非结构化网格进行控制。结果表明,四边形网格质量最好的是6万节点数和粗网格,三角形网格质量最好的是9万节点数和粗网格。与过去的研究相比,这两种组合都产生了最一致和可靠的结果。但考虑到MQL模型在CFD分析中的计算时间较短,且结果准确可靠,因此本研究决定选择6万个节点数的四边形单元单元,采用粗网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
期刊最新文献
Experimental investigation on the effect of process variables for the quality characteristics of AA 2024 processed in cold extrusion Detailed performance analysis of parabolic trough collectors including geometric effect Influence of tool pin profile on the mechanical strength and surface roughness of AA6061-T6 overlap joint friction stir welding Crowd counting algorithm based on face detection and skin color recognition Vibrations control of railway vehicles using decentralized proportional integral derivative controller with flow direction optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1