None H.Y. Imran, None D.L.A. Abdul Majid, None M.F. bin Abdul Hamid, None E.J. binti Abdullah, None S.E. Mohammed, None S. Karunakaran
{"title":"Protecting car engines and controlling their temperature by using shape memory alloy as an automatic mechanical cooling sensor","authors":"None H.Y. Imran, None D.L.A. Abdul Majid, None M.F. bin Abdul Hamid, None E.J. binti Abdullah, None S.E. Mohammed, None S. Karunakaran","doi":"10.15282/jmes.17.3.2023.10.0764","DOIUrl":null,"url":null,"abstract":"Shape memory alloys (SMA) are smart materials with a dual function as a sensor as well as an actuator that can generate cyclic contraction and extension when exposed to an increasing and decreasing temperature. In this work, the potential of SMA in the form of spring as an actuator that activates a warning system for detecting high temperatures in vehicle engine is investigated. The working principle of SMA spring is it activates thermomechanically to generate linear reciprocating motion as a result of the contraction (heated) and extension (cooled). This unique feature is employed in the design of a new type of smart automatic switch that regulates and controls the temperature of the vehicle engine instead of using conventional sensors such as thermocouple. The smart automatic switch has two poles positive and negative, where the positive pole represents the SMA spring, which is completely immersed in the water of the engine. While the negative pole is the operating shaft that collects all the parts of the smart switch and is installed on the engine body. A lab scale experiment was conducted to analyse the displacements and results shown that contraction of 20 mm can be produced from the SMA spring due to pulling force when the temperature of the engine increases from 50 ℃ to 80 ℃ and the recovery of the SMA spring to the original position can be obtained by the pushing force 0.5 N from a bias spring when the temperature decreased. From this experiment, a design of the smart switch is that can be utilized the shape memory function is presented. The simplified design proposed demonstrates the shape memory alloy as having good potential in automotive applications such as this as it low cost, space saving, silent operation, and simple in design aspect.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"117 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.3.2023.10.0764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Shape memory alloys (SMA) are smart materials with a dual function as a sensor as well as an actuator that can generate cyclic contraction and extension when exposed to an increasing and decreasing temperature. In this work, the potential of SMA in the form of spring as an actuator that activates a warning system for detecting high temperatures in vehicle engine is investigated. The working principle of SMA spring is it activates thermomechanically to generate linear reciprocating motion as a result of the contraction (heated) and extension (cooled). This unique feature is employed in the design of a new type of smart automatic switch that regulates and controls the temperature of the vehicle engine instead of using conventional sensors such as thermocouple. The smart automatic switch has two poles positive and negative, where the positive pole represents the SMA spring, which is completely immersed in the water of the engine. While the negative pole is the operating shaft that collects all the parts of the smart switch and is installed on the engine body. A lab scale experiment was conducted to analyse the displacements and results shown that contraction of 20 mm can be produced from the SMA spring due to pulling force when the temperature of the engine increases from 50 ℃ to 80 ℃ and the recovery of the SMA spring to the original position can be obtained by the pushing force 0.5 N from a bias spring when the temperature decreased. From this experiment, a design of the smart switch is that can be utilized the shape memory function is presented. The simplified design proposed demonstrates the shape memory alloy as having good potential in automotive applications such as this as it low cost, space saving, silent operation, and simple in design aspect.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.