Numerical analysis of non-Fourier heat conduction dynamics in the composite layer

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of Mechanical Engineering and Sciences Pub Date : 2023-09-27 DOI:10.15282/jmes.17.3.2023.6.0760
None R. Yuvaraj, None R. Senthilkumar
{"title":"Numerical analysis of non-Fourier heat conduction dynamics in the composite layer","authors":"None R. Yuvaraj, None R. Senthilkumar","doi":"10.15282/jmes.17.3.2023.6.0760","DOIUrl":null,"url":null,"abstract":"This paper presents the numerical analysis of non-Fourier heat conduction in thin composite layers under asymmetrical boundary conditions. In the thermal barriers such as steam and gas turbine blades, thin film coating are used to protect the blade from thermal damage. The coating on the blades are very short in length. Heat conduction across thin composite layer with short time is examined using a finite element approach. With this very small duration with the finite speed of the thermal wave, the Fourier mode of heat conduction is disappeared due to the infinite speed of the thermal wave assumption. Therefore, analyzing the non-Fourier heat conduction in thin layers is essential. The developed model is executed in Python using Newmark's scheme and the constant average acceleration method to predict the temperature variation and temperature contours. The present model is validated with an experimental and numerical solution with good agreement. Besides, the temperature distribution across the composite layer with the entire length of the substrate and the coating for different thermal conductivity values, thermal diffusivity, and relaxation time are examined. It is noted that when the dimensionless","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"3 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.3.2023.6.0760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the numerical analysis of non-Fourier heat conduction in thin composite layers under asymmetrical boundary conditions. In the thermal barriers such as steam and gas turbine blades, thin film coating are used to protect the blade from thermal damage. The coating on the blades are very short in length. Heat conduction across thin composite layer with short time is examined using a finite element approach. With this very small duration with the finite speed of the thermal wave, the Fourier mode of heat conduction is disappeared due to the infinite speed of the thermal wave assumption. Therefore, analyzing the non-Fourier heat conduction in thin layers is essential. The developed model is executed in Python using Newmark's scheme and the constant average acceleration method to predict the temperature variation and temperature contours. The present model is validated with an experimental and numerical solution with good agreement. Besides, the temperature distribution across the composite layer with the entire length of the substrate and the coating for different thermal conductivity values, thermal diffusivity, and relaxation time are examined. It is noted that when the dimensionless
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复合材料层非傅立叶热传导动力学的数值分析
本文对非对称边界条件下复合材料薄层的非傅立叶热传导进行了数值分析。在蒸汽和燃气轮机叶片等热障中,薄膜涂层用于保护叶片免受热损伤。叶片上的涂层长度很短。采用有限元方法研究了复合材料薄层短时间内的热传导问题。在这个极小的持续时间和有限的热波速度下,由于热波的无限速度假设,热传导的傅立叶模式消失了。因此,分析薄层中的非傅立叶热传导是必要的。所开发的模型在Python中使用Newmark的方案和恒定平均加速度方法来预测温度变化和温度轮廓。通过实验和数值解验证了模型的正确性。此外,还研究了不同导热系数、热扩散系数和弛豫时间下的复合层和涂层的温度分布。值得注意的是,当无因次时
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
期刊最新文献
Experimental investigation on the effect of process variables for the quality characteristics of AA 2024 processed in cold extrusion Detailed performance analysis of parabolic trough collectors including geometric effect Influence of tool pin profile on the mechanical strength and surface roughness of AA6061-T6 overlap joint friction stir welding Crowd counting algorithm based on face detection and skin color recognition Vibrations control of railway vehicles using decentralized proportional integral derivative controller with flow direction optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1