A Novel Hypergraph Clustered Gray Relational Analysis HGPSO Algorithm for Data Aggregation in WSN

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2023-09-01 DOI:10.2478/cait-2023-0031
Shailendra Pushkin, None Ranvijay
{"title":"A Novel Hypergraph Clustered Gray Relational Analysis HGPSO Algorithm for Data Aggregation in WSN","authors":"Shailendra Pushkin, None Ranvijay","doi":"10.2478/cait-2023-0031","DOIUrl":null,"url":null,"abstract":"Abstract Wireless Sensor Networks (WSN) aggregate data from multiple sensors and transfer it to a central node. Sensor nodes should use as little energy as possible to aggregate data. This work has focused on optimal clustering and cluster head node selection to save energy. HyperGraphs (HGC) and cluster head selection based on distance and energy consumption are unique approaches to spectral clustering. GRA computes a relational matrix to select the cluster head. The network’s Moving Agent (MA) may use Hypergraphed Particle Swarm Optimization (HGPSO) to collect data from cluster heads. Compared to the clustering algorithm without agent movement, the HGC-GRA-HGPSO approach has increased residual energy by 5.59% and packets by 2.44%. It also has improved residual energy by 2.45% compared to Grey Wolf Optimizer-based Clustering (GWO-C).","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Wireless Sensor Networks (WSN) aggregate data from multiple sensors and transfer it to a central node. Sensor nodes should use as little energy as possible to aggregate data. This work has focused on optimal clustering and cluster head node selection to save energy. HyperGraphs (HGC) and cluster head selection based on distance and energy consumption are unique approaches to spectral clustering. GRA computes a relational matrix to select the cluster head. The network’s Moving Agent (MA) may use Hypergraphed Particle Swarm Optimization (HGPSO) to collect data from cluster heads. Compared to the clustering algorithm without agent movement, the HGC-GRA-HGPSO approach has increased residual energy by 5.59% and packets by 2.44%. It also has improved residual energy by 2.45% compared to Grey Wolf Optimizer-based Clustering (GWO-C).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于WSN数据聚合的超图聚类灰色关联分析HGPSO算法
无线传感器网络(WSN)将来自多个传感器的数据聚合并传输到一个中心节点。传感器节点应该使用尽可能少的能量来聚合数据。该工作主要集中在最优聚类和簇头节点的选择上,以节省能源。超图(HGC)和基于距离和能量消耗的簇头选择是光谱聚类的独特方法。GRA计算一个关系矩阵来选择簇头。网络的移动代理(MA)可以使用Hypergraphed Particle Swarm Optimization (HGPSO)从簇头收集数据。与不移动智能体的聚类算法相比,HGC-GRA-HGPSO方法的剩余能量和包数分别提高了5.59%和2.44%。与基于灰狼优化器的聚类(GWO-C)相比,它还提高了2.45%的剩余能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1