Convex Least Angle Regression Based LASSO Feature Selection and Swish Activation Function Model for Startup Survival Rate

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2023-11-01 DOI:10.2478/cait-2023-0039
Ramakrishna Allu, V. N. R. Padmanabhuni
{"title":"Convex Least Angle Regression Based LASSO Feature Selection and Swish Activation Function Model for Startup Survival Rate","authors":"Ramakrishna Allu, V. N. R. Padmanabhuni","doi":"10.2478/cait-2023-0039","DOIUrl":null,"url":null,"abstract":"Abstract A startup is a recently established business venture led by entrepreneurs, to create and offer new products or services. The discovery of promising startups is a challenging task for creditors, policymakers, and investors. Therefore, the startup survival rate prediction is required to be developed for the success/failure of startup companies. In this paper, the feature selection using the Convex Least Angle Regression Least Absolute Shrinkage and Selection Operator (CLAR-LASSO) is proposed to improve the classification of startup survival rate prediction. The Swish Activation Function based Long Short-Term Memory (SAFLSTM) is developed for classifying the survival rate of startups. Further, the Local Interpretable Model-agnostic Explanations (LIME) model interprets the predicted classification to the user. Existing research such as Hyper Parameter Tuning (HPT)-Logistic regression, HPT-Support Vector Machine (SVM), HPT-XGBoost, and SAFLSTM are used to compare the CLAR-LASSO. The accuracy of the CLAR-LASSO is 95.67% which is high when compared to the HPT-Logistic regression, HPT-SVM, HPT-XGBoost, and SAFLSTM.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A startup is a recently established business venture led by entrepreneurs, to create and offer new products or services. The discovery of promising startups is a challenging task for creditors, policymakers, and investors. Therefore, the startup survival rate prediction is required to be developed for the success/failure of startup companies. In this paper, the feature selection using the Convex Least Angle Regression Least Absolute Shrinkage and Selection Operator (CLAR-LASSO) is proposed to improve the classification of startup survival rate prediction. The Swish Activation Function based Long Short-Term Memory (SAFLSTM) is developed for classifying the survival rate of startups. Further, the Local Interpretable Model-agnostic Explanations (LIME) model interprets the predicted classification to the user. Existing research such as Hyper Parameter Tuning (HPT)-Logistic regression, HPT-Support Vector Machine (SVM), HPT-XGBoost, and SAFLSTM are used to compare the CLAR-LASSO. The accuracy of the CLAR-LASSO is 95.67% which is high when compared to the HPT-Logistic regression, HPT-SVM, HPT-XGBoost, and SAFLSTM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 LASSO 特征选择和 Swish 激活函数模型的凸最小角回归法计算启动存活率
摘要 初创企业是最近成立的企业,由创业者领导,创造并提供新产品或服务。对于债权人、决策者和投资者来说,发现有前途的初创企业是一项具有挑战性的任务。因此,需要开发初创企业存活率预测工具来预测初创企业的成败。本文提出使用凸最小角回归最小绝对收缩和选择操作符(CLAR-LASSO)进行特征选择,以改进初创企业存活率预测的分类。开发了基于 Swish 激活函数的长短期记忆(SAFLSTM),用于对初创企业的存活率进行分类。此外,本地可解释模型-不可知解释(LIME)模型可向用户解释预测的分类。现有的研究,如超参数调整(HPT)-逻辑回归、HPT-支持向量机(SVM)、HPT-XGBoost 和 SAFLSTM,都被用于比较 CLAR-LASSO。与 HPT 逻辑回归、HPT-SVM、HPT-XGBoost 和 SAFLSTM 相比,CLAR-LASSO 的准确率高达 95.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1