The Vehicle Routing Problem with Availability Profiles

IF 4.4 2区 工程技术 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Transportation Science Pub Date : 2023-03-01 DOI:10.1287/trsc.2022.1182
Stefan Voigt, Markus Frank, Pirmin Fontaine, Heinrich Kuhn
{"title":"The Vehicle Routing Problem with Availability Profiles","authors":"Stefan Voigt, Markus Frank, Pirmin Fontaine, Heinrich Kuhn","doi":"10.1287/trsc.2022.1182","DOIUrl":null,"url":null,"abstract":"In business-to-consumer (B2C) parcel delivery, the presence of the customer at the time of delivery is implicitly required in many cases. If the customer is not at home, the delivery fails—causing additional costs and efforts for the parcel service provider as well as inconvenience for the customer. Parcel service providers typically report high failed-delivery rates, as they have limited possibilities to arrange a delivery time with the recipient. We address the failed-delivery problem in B2C parcel delivery by considering customer-individual availability profiles (APs) that consist of a set of time windows, each associated with a probability that the delivery is successful if conducted in the respective time window. To assess the benefit of APs for delivery tour planning, we formulate the vehicle routing problem with availability profiles (VRPAP) as a mixed integer program, including the trade-off between transportation and failed-delivery costs. We provide analytical insights concerning the model’s cost-savings potential by determining lower and upper bounds. In order to solve larger instances, we develop a novel hybrid adaptive large neighborhood search (HALNS). The HALNS is highly adaptable and also able to solve related time-constrained vehicle routing problems (i.e., vehicle routing problems with hard, multiple, and soft time windows). We show its performance on these related benchmark instances and find a total of 20 new best-known solutions. We additionally conduct various experiments on self-generated VRPAP instances to generate managerial insights. In a case study using real-world data, despite little information on the APs, we were able to reduce failed deliveries by approximately 12% and overall costs by 5%. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1182 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"101 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2022.1182","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 5

Abstract

In business-to-consumer (B2C) parcel delivery, the presence of the customer at the time of delivery is implicitly required in many cases. If the customer is not at home, the delivery fails—causing additional costs and efforts for the parcel service provider as well as inconvenience for the customer. Parcel service providers typically report high failed-delivery rates, as they have limited possibilities to arrange a delivery time with the recipient. We address the failed-delivery problem in B2C parcel delivery by considering customer-individual availability profiles (APs) that consist of a set of time windows, each associated with a probability that the delivery is successful if conducted in the respective time window. To assess the benefit of APs for delivery tour planning, we formulate the vehicle routing problem with availability profiles (VRPAP) as a mixed integer program, including the trade-off between transportation and failed-delivery costs. We provide analytical insights concerning the model’s cost-savings potential by determining lower and upper bounds. In order to solve larger instances, we develop a novel hybrid adaptive large neighborhood search (HALNS). The HALNS is highly adaptable and also able to solve related time-constrained vehicle routing problems (i.e., vehicle routing problems with hard, multiple, and soft time windows). We show its performance on these related benchmark instances and find a total of 20 new best-known solutions. We additionally conduct various experiments on self-generated VRPAP instances to generate managerial insights. In a case study using real-world data, despite little information on the APs, we were able to reduce failed deliveries by approximately 12% and overall costs by 5%. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1182 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可用性配置文件的车辆路径问题
在企业到消费者(B2C)的包裹递送中,在许多情况下,在递送时隐含地要求客户在场。如果客户不在家,递送就会失败,这会给包裹服务提供商带来额外的成本和努力,也会给客户带来不便。包裹服务提供商通常报告高失败率,因为他们与收件人安排送货时间的可能性有限。我们通过考虑由一组时间窗口组成的客户个人可用性配置文件(ap)来解决B2C包裹递送中的交付失败问题,每个可用性配置文件都与在各自时间窗口内进行交付成功的概率相关联。为了评估ap对配送路线规划的好处,我们将车辆路径问题(VRPAP)表述为一个混合整数规划,包括运输成本和失败配送成本之间的权衡。通过确定下限和上限,我们提供了关于模型成本节约潜力的分析见解。为了解决更大的实例,我们开发了一种新的混合自适应大邻域搜索(HALNS)。HALNS具有很强的适应性,也能够解决相关的时间约束车辆路线问题(即具有硬、多和软时间窗的车辆路线问题)。我们展示了它在这些相关基准实例上的性能,并找到了总共20个新的最知名的解决方案。我们还对自生成的VRPAP实例进行了各种实验,以获得管理见解。在一个使用真实世界数据的案例研究中,尽管关于ap的信息很少,但我们能够将失败交付减少约12%,总成本减少5%。补充材料:在线附录可在https://doi.org/10.1287/trsc.2022.1182上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Science
Transportation Science 工程技术-运筹学与管理科学
CiteScore
8.30
自引率
10.90%
发文量
111
审稿时长
12 months
期刊介绍: Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services. Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.
期刊最新文献
CARMA: Fair and Efficient Bottleneck Congestion Management via Nontradable Karma Credits Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems On-Demand Meal Delivery: A Markov Model for Circulating Couriers Physics-Informed Machine Learning for Calibrating Macroscopic Traffic Flow Models Heatmap Design for Probabilistic Driver Repositioning in Crowdsourced Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1