Michael G. H. Bell, Dat Tien Le, Jyotirmoyee Bhattacharjya, Glenn Geers
{"title":"On-Demand Meal Delivery: A Markov Model for Circulating Couriers","authors":"Michael G. H. Bell, Dat Tien Le, Jyotirmoyee Bhattacharjya, Glenn Geers","doi":"10.1287/trsc.2024.0513","DOIUrl":null,"url":null,"abstract":"On-demand meal delivery has become a feature of most cities around the world as a result of platforms and apps that facilitate it as well as the pandemic, which for a period, closed restaurants. Meals are delivered by couriers, typically on bikes, e-bikes, or scooters, who circulate collecting meals from kitchens and delivering them to customers, who usually order online. A Markov model for circulating couriers with n + 1 parameters, where [Formula: see text] is the number of kitchens plus customers, is derived by entropy maximization. There is one parameter for each kitchen and customer representing the demand for a courier, and there is one parameter representing the urgency of delivery. It is shown how the mean and variance of delivery time can be calculated once the parameters are known. The Markov model is irreducible. Two procedures are presented for calibrating model parameters on a data set of orders. Both procedures match known order frequencies with fitted visit probabilities; the first inputs an urgency parameter value and outputs mean delivery time, whereas the second inputs mean delivery time and outputs the corresponding urgency parameter value. Model calibration is demonstrated on a publicly available data set of meal orders from Grubhub. Grubhub data are also used to validate the calibrated model using a likelihood ratio. By changing the location of one kitchen, it is shown how the calibrated model can estimate the resulting change in demand for its meals and the corresponding mean delivery time. The Markov model could also be used for the assignment of courier trips to a street network.History: This paper has been accepted for the Transportation Science Special Issue on ISTTT Conference.","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"11 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2024.0513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
On-demand meal delivery has become a feature of most cities around the world as a result of platforms and apps that facilitate it as well as the pandemic, which for a period, closed restaurants. Meals are delivered by couriers, typically on bikes, e-bikes, or scooters, who circulate collecting meals from kitchens and delivering them to customers, who usually order online. A Markov model for circulating couriers with n + 1 parameters, where [Formula: see text] is the number of kitchens plus customers, is derived by entropy maximization. There is one parameter for each kitchen and customer representing the demand for a courier, and there is one parameter representing the urgency of delivery. It is shown how the mean and variance of delivery time can be calculated once the parameters are known. The Markov model is irreducible. Two procedures are presented for calibrating model parameters on a data set of orders. Both procedures match known order frequencies with fitted visit probabilities; the first inputs an urgency parameter value and outputs mean delivery time, whereas the second inputs mean delivery time and outputs the corresponding urgency parameter value. Model calibration is demonstrated on a publicly available data set of meal orders from Grubhub. Grubhub data are also used to validate the calibrated model using a likelihood ratio. By changing the location of one kitchen, it is shown how the calibrated model can estimate the resulting change in demand for its meals and the corresponding mean delivery time. The Markov model could also be used for the assignment of courier trips to a street network.History: This paper has been accepted for the Transportation Science Special Issue on ISTTT Conference.
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.