{"title":"Vector control of permanent magnet synchronous motor drive system based on new sliding mode control","authors":"Yun Zhang, Hao Wu, Ying-Ren Chien, Jingwei Tang","doi":"10.1587/elex.20.20230263","DOIUrl":null,"url":null,"abstract":"A new sliding mode speed controller (NSMC) based on an improved genetic algorithm (IGA) is proposed to solve the problems of disturbance rejection and response speed differences in traditional vector control of permanent magnet synchronous motor (PMSM) driver systems. The improved algorithm adopts an adaptive crossover and mutation probability formula, which enhances the global search ability of the genetic algorithm. The algorithm is used to optimize the parameters of the sliding mode speed controller. Moreover, the sliding mode disturbance observer is used to generate feedforward signals to compensate for the influence of external disturbances. It is applied to the speed control loop to effectively improve the system’s robustness. Finally, numerical simulation results demonstrate the robustness and fast response of the proposed method.","PeriodicalId":50387,"journal":{"name":"Ieice Electronics Express","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Electronics Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/elex.20.20230263","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A new sliding mode speed controller (NSMC) based on an improved genetic algorithm (IGA) is proposed to solve the problems of disturbance rejection and response speed differences in traditional vector control of permanent magnet synchronous motor (PMSM) driver systems. The improved algorithm adopts an adaptive crossover and mutation probability formula, which enhances the global search ability of the genetic algorithm. The algorithm is used to optimize the parameters of the sliding mode speed controller. Moreover, the sliding mode disturbance observer is used to generate feedforward signals to compensate for the influence of external disturbances. It is applied to the speed control loop to effectively improve the system’s robustness. Finally, numerical simulation results demonstrate the robustness and fast response of the proposed method.
期刊介绍:
An aim of ELEX is rapid publication of original, peer-reviewed short papers that treat the field of modern electronics and electrical engineering. The boundaries of acceptable fields are not strictly delimited and they are flexibly varied to reflect trends of the fields. The scope of ELEX has mainly been focused on device and circuit technologies. Current appropriate topics include:
- Integrated optoelectronics (lasers and optoelectronic devices, silicon photonics, planar lightwave circuits, polymer optical circuits, etc.)
- Optical hardware (fiber optics, microwave photonics, optical interconnects, photonic signal processing, photonic integration and modules, optical sensing, etc.)
- Electromagnetic theory
- Microwave and millimeter-wave devices, circuits, and modules
- THz devices, circuits and modules
- Electron devices, circuits and modules (silicon, compound semiconductor, organic and novel materials)
- Integrated circuits (memory, logic, analog, RF, sensor)
- Power devices and circuits
- Micro- or nano-electromechanical systems
- Circuits and modules for storage
- Superconducting electronics
- Energy harvesting devices, circuits and modules
- Circuits and modules for electronic displays
- Circuits and modules for electronic instrumentation
- Devices, circuits and modules for IoT and biomedical applications