Effect of Nitrogen-doped − Palm Oil Mill Effluent Sludge-biochar as Peroxydisulfate Activator on the Removal of Methylene Blue Dye as an Environmental-friendly Approach
Aida Humaira Sallehuddin, Sabrina Karim, Mohamad Ali Ahmad, Woei Yenn Tong, Noor Aina Mohd Nazri
{"title":"Effect of Nitrogen-doped − Palm Oil Mill Effluent Sludge-biochar as Peroxydisulfate Activator on the Removal of Methylene Blue Dye as an Environmental-friendly Approach","authors":"Aida Humaira Sallehuddin, Sabrina Karim, Mohamad Ali Ahmad, Woei Yenn Tong, Noor Aina Mohd Nazri","doi":"10.47836/mjmhs.19.s9.20","DOIUrl":null,"url":null,"abstract":"Introduction: Water pollution caused by dyes is a major problem as it is a toxic chemical that can cause chronic diseases when exposed to humans and aquatic habitats. Sulfate-based advanced oxidation process based on peroxydisulfate (PDS) has received a lot of attention recently for achieving color degradation in wastewater. Transition metal-based homogeneous/heterogeneous catalysts have shown to be a good alternative for the activation of persulfate. Nonetheless, this leads to significant secondary contamination due to metal leaching. Alternatively, nitrogen-doped biochar is a promising non-metal persulfate activator due to its lower cost and more environmentally friendly. Methods: Biochar from Palm Oil Mill Effluent (POME) sludge doped with nitrogen source of urea, ammonium chloride, and melamine was synthesized at a 700°C pyrolysis process and used to activate PDS. The nitrogen content of synthesized POME biochar was altered to ratios of 25:75, 50:50, and 75:25 respectively. Batch degradation experiments were then conducted to determine the feasibility of catalytic removal of methylene blue (MB) dye. Results: Based on experimental results, urea-doped biochar showed a greater MB removal compared to ammonium chloride and melamine-doped biochar. Besides that, higher nitrogen-to-biochar ratio increases the MB degradation significantly. A similar trend was demonstrated when a higher urea-doped biochar dosage was utilized. By utilizing 5.0 g of urea-doped biochar, a 100 ± 0.7% degradation of MB was achieved. Conclusion: This research provides an effective method to produce carbon-based catalysts from sludge recovery for activation of PDS, also enhancing the catalytic performance of biochar on MB dye removal by N-doping.","PeriodicalId":40029,"journal":{"name":"Malaysian Journal of Medicine and Health Sciences","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Medicine and Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjmhs.19.s9.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Water pollution caused by dyes is a major problem as it is a toxic chemical that can cause chronic diseases when exposed to humans and aquatic habitats. Sulfate-based advanced oxidation process based on peroxydisulfate (PDS) has received a lot of attention recently for achieving color degradation in wastewater. Transition metal-based homogeneous/heterogeneous catalysts have shown to be a good alternative for the activation of persulfate. Nonetheless, this leads to significant secondary contamination due to metal leaching. Alternatively, nitrogen-doped biochar is a promising non-metal persulfate activator due to its lower cost and more environmentally friendly. Methods: Biochar from Palm Oil Mill Effluent (POME) sludge doped with nitrogen source of urea, ammonium chloride, and melamine was synthesized at a 700°C pyrolysis process and used to activate PDS. The nitrogen content of synthesized POME biochar was altered to ratios of 25:75, 50:50, and 75:25 respectively. Batch degradation experiments were then conducted to determine the feasibility of catalytic removal of methylene blue (MB) dye. Results: Based on experimental results, urea-doped biochar showed a greater MB removal compared to ammonium chloride and melamine-doped biochar. Besides that, higher nitrogen-to-biochar ratio increases the MB degradation significantly. A similar trend was demonstrated when a higher urea-doped biochar dosage was utilized. By utilizing 5.0 g of urea-doped biochar, a 100 ± 0.7% degradation of MB was achieved. Conclusion: This research provides an effective method to produce carbon-based catalysts from sludge recovery for activation of PDS, also enhancing the catalytic performance of biochar on MB dye removal by N-doping.
期刊介绍:
The Malaysian Journal of Medicine and Health Sciences (MJMHS) is published by the Faculty of Medicine and Health Sciences, Universiti Putra Malaysia. The main aim of the MJMHS is to be a premier journal on all aspects of medicine and health sciences in Malaysia and internationally. The focus of the MJMHS will be on results of original scientific research and development, emerging issues and policy analyses pertaining to medical, biomedical and clinical sciences.