Recent advances in optical fiber high-temperature sensors and encapsulation technique [Invited]

IF 3.3 2区 物理与天体物理 Q2 OPTICS Chinese Optics Letters Pub Date : 2023-01-01 DOI:10.3788/col202321.090007
文� �, 强 �, 建桥 �, 振丞 王, 洋 于, 洲 孟
{"title":"Recent advances in optical fiber high-temperature sensors and encapsulation technique [Invited]","authors":"æ–‡æ�° å¾�, 强 å�ž, 建桥 æ¢�, 振丞 王, æ´‹ 于, æ´² å­Ÿ","doi":"10.3788/col202321.090007","DOIUrl":null,"url":null,"abstract":"In the aerospace field, for aerospace engines and other high-end manufacturing equipment working in extreme environments, like ultrahigh temperatures, high pressure, and high-speed airflow, in situ temperature measurement is of great importance for improving the structure design and achieving the health monitoring and the fault diagnosis of critical parts. Optical fiber sensors have the advantages of small size, easy design, corrosion resistance, anti-electromagnetic interference, and the ability to achieve distributed or quasi-distributed sensing and have broad application prospects for temperature sensing in extreme environments. In this review, first, we introduce the current research status of fiber Bragg grating-type and Fabry–Perot interferometer-type high-temperature sensors. Then we review the optical fiber high-temperature sensor encapsulation techniques, including tubular encapsulation, substrate encapsulation, and metal-embedded encapsulation, and discuss the extreme environmental adaptability of different encapsulation structures. Finally, the critical technological issues that need to be solved for the application of optical fiber sensors in extreme environments are discussed.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"72 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/col202321.090007","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the aerospace field, for aerospace engines and other high-end manufacturing equipment working in extreme environments, like ultrahigh temperatures, high pressure, and high-speed airflow, in situ temperature measurement is of great importance for improving the structure design and achieving the health monitoring and the fault diagnosis of critical parts. Optical fiber sensors have the advantages of small size, easy design, corrosion resistance, anti-electromagnetic interference, and the ability to achieve distributed or quasi-distributed sensing and have broad application prospects for temperature sensing in extreme environments. In this review, first, we introduce the current research status of fiber Bragg grating-type and Fabry–Perot interferometer-type high-temperature sensors. Then we review the optical fiber high-temperature sensor encapsulation techniques, including tubular encapsulation, substrate encapsulation, and metal-embedded encapsulation, and discuss the extreme environmental adaptability of different encapsulation structures. Finally, the critical technological issues that need to be solved for the application of optical fiber sensors in extreme environments are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光纤高温传感器及封装技术研究进展[特邀]
在航空航天领域,对于在超高温、高压、高速气流等极端环境下工作的航空发动机等高端制造设备,现场温度测量对于改进结构设计,实现关键部件的健康监测和故障诊断具有重要意义。光纤传感器具有体积小、易于设计、耐腐蚀、抗电磁干扰、能够实现分布式或准分布式传感等优点,在极端环境下的温度传感具有广阔的应用前景。本文首先介绍了光纤布拉格光栅型和法布里-珀罗干涉仪型高温传感器的研究现状。然后回顾了光纤高温传感器的封装技术,包括管式封装、基板封装和金属嵌入封装,并讨论了不同封装结构的极端环境适应性。最后,讨论了光纤传感器在极端环境下应用需要解决的关键技术问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
期刊最新文献
Photon pair generation from lithium niobate metasurface with tunable spatial entanglement High-dimensional frequency conversion in a hot atomic system All-solid-state far-UVC pulse laser at 222 nm wavelength for UVC disinfection Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1