首页 > 最新文献

Chinese Optics Letters最新文献

英文 中文
Photon pair generation from lithium niobate metasurface with tunable spatial entanglement 具有可调空间纠缠的铌酸锂超表面产生光子对
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-08-31 DOI: 10.3788/COL202321.010005
Jihua Zhang, Jinyong Ma, D. Neshev, A. Sukhorukov
Two-photon state with spatial entanglement is an essential resource for testing fundamental laws of quantum mechanics and various quantum applications. Its creation typically relies on spontaneous parametric down-conversion in bulky nonlinear crystals where the tunability of spatial entanglement is limited. Here, we predict that ultrathin nonlinear lithium niobate metasurfaces can generate and diversely tune spatially entangled photon pairs. The spatial properties of photons including the emission pattern, rate, and degree of spatial entanglement are analysed theoretically with the coupled mode theory and Schmidt decomposition method. We show that by leveraging the strong angular dispersion of the metasurface, the degree of spatial entanglement quantified by the Schmidt number can be decreased or increased by changing the pump laser wavelength and a Gaussian beam size. This flexibility can facilitate diverse quantum applications of entangled photon states generated from nonlinear metasurfaces.
具有空间纠缠的双光子态是测试量子力学基本定律和各种量子应用的重要资源。它的产生通常依赖于大体积非线性晶体中的自发参数下转换,其中空间纠缠的可调性有限。在这里,我们预测超薄非线性铌酸锂超表面可以产生和多样化调谐空间纠缠光子对。利用耦合模式理论和施密特分解方法,从理论上分析了光子的空间特性,包括发射模式、速率和空间纠缠度。我们证明了利用超表面的强角色散,可以通过改变泵浦激光波长和高斯光束大小来减小或增加施密特数量化的空间纠缠度。这种灵活性可以促进非线性超表面产生的纠缠光子态的各种量子应用。
{"title":"Photon pair generation from lithium niobate metasurface with tunable spatial entanglement","authors":"Jihua Zhang, Jinyong Ma, D. Neshev, A. Sukhorukov","doi":"10.3788/COL202321.010005","DOIUrl":"https://doi.org/10.3788/COL202321.010005","url":null,"abstract":"Two-photon state with spatial entanglement is an essential resource for testing fundamental laws of quantum mechanics and various quantum applications. Its creation typically relies on spontaneous parametric down-conversion in bulky nonlinear crystals where the tunability of spatial entanglement is limited. Here, we predict that ultrathin nonlinear lithium niobate metasurfaces can generate and diversely tune spatially entangled photon pairs. The spatial properties of photons including the emission pattern, rate, and degree of spatial entanglement are analysed theoretically with the coupled mode theory and Schmidt decomposition method. We show that by leveraging the strong angular dispersion of the metasurface, the degree of spatial entanglement quantified by the Schmidt number can be decreased or increased by changing the pump laser wavelength and a Gaussian beam size. This flexibility can facilitate diverse quantum applications of entangled photon states generated from nonlinear metasurfaces.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"58 2 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90937055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
High-dimensional frequency conversion in a hot atomic system 热原子系统中的高维频率转换
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-03-27 DOI: 10.3788/col202321.092701
Wei-Hang Zhang, Ying-hao Ye, Lei Zeng, Enze Li, Jing-Yuan Peng, D. Ding, B. Shi
One of the major difficulties in realizing a high-dimensional frequency converter for conventional optical vortex (COV) stems from the difference in ring diameter of COV modes with different topological charge numbers l. Here, we implement a high-dimensional frequency convertor for perfect optical vortex (POV) modes with invariant size through the four-wave mixing (FWM) process by utilizing Bessel-Gaussian beams instead of Laguerre-Gaussian beams. The measured conversion efficiency from 1530 nm to 795 nm is independent of l at least in subspace of {-6,...,6}, and the achieved conversion fidelities for two-dimensional (2D) superposed POV states exceed 97%. We further realize the frequency conversion of 3D, 5D and 7D superposition states with fidelities as high as 96.70%, 89.16% and 88.68%, respectively. The reported scheme is implemented in hot atomic vapor, it's also compatible with the cold atomic system and may find applications in high-capacity and long-distance quantum communication.
传统光涡旋(COV)高维频率转换器实现的主要困难之一是不同拓扑电荷数1的COV模式环径不同。本文采用贝塞尔-高斯光束代替拉盖尔-高斯光束,通过四波混频(FWM)工艺实现了尺寸不变的完美光涡旋(POV)模式的高维频率转换器。从1530 nm到795 nm测量的转换效率至少在{-6,…,6},实现的二维(2D)叠加POV状态转换保真度超过97%。进一步实现了3D、5D和7D叠加态的频率转换,保真度分别高达96.70%、89.16%和88.68%。该方案可在热原子蒸汽中实现,也可与冷原子系统兼容,可用于大容量、远距离量子通信。
{"title":"High-dimensional frequency conversion in a hot atomic system","authors":"Wei-Hang Zhang, Ying-hao Ye, Lei Zeng, Enze Li, Jing-Yuan Peng, D. Ding, B. Shi","doi":"10.3788/col202321.092701","DOIUrl":"https://doi.org/10.3788/col202321.092701","url":null,"abstract":"One of the major difficulties in realizing a high-dimensional frequency converter for conventional optical vortex (COV) stems from the difference in ring diameter of COV modes with different topological charge numbers l. Here, we implement a high-dimensional frequency convertor for perfect optical vortex (POV) modes with invariant size through the four-wave mixing (FWM) process by utilizing Bessel-Gaussian beams instead of Laguerre-Gaussian beams. The measured conversion efficiency from 1530 nm to 795 nm is independent of l at least in subspace of {-6,...,6}, and the achieved conversion fidelities for two-dimensional (2D) superposed POV states exceed 97%. We further realize the frequency conversion of 3D, 5D and 7D superposition states with fidelities as high as 96.70%, 89.16% and 88.68%, respectively. The reported scheme is implemented in hot atomic vapor, it's also compatible with the cold atomic system and may find applications in high-capacity and long-distance quantum communication.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"41 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84942117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic and electric Purcell enhancement in a hybrid metal-dielectric nanostructure 金属-介电混合纳米结构的磁与电Purcell增强
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.103602
Lingxiao Shan, Qi Liu, Yun Ma, Yali Jia, Hai Lin, Guowei Lü, Qihuang Gong, Ying Gu
,
{"title":"Magnetic and electric Purcell enhancement in a hybrid metal-dielectric nanostructure","authors":"Lingxiao Shan, Qi Liu, Yun Ma, Yali Jia, Hai Lin, Guowei Lü, Qihuang Gong, Ying Gu","doi":"10.3788/col202321.103602","DOIUrl":"https://doi.org/10.3788/col202321.103602","url":null,"abstract":",","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135357930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-pixel wavefront sensing via vectorial polarization modulation 通过矢量偏振调制的单像素波前传感
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.090008
武男 æ�Ž, 毓 曹, 禹 å®�, 锋æ�° ä¹, å…¨ å­™, 晓军 许
The Shack – Hartmann wavefront sensor (SHWFS) is commonly used for its high speed and precision in adaptive optics. However, its performance is limited in low light conditions, particularly when observing faint objects in astronomical applications. Instead of a pixelated detector, we present a new approach for wavefront sensing using a single-pixel detector, which is able to code the spatial position of a light spot array into the polarization dimension and decode the polarization state in the polar coordinate. We propose validation experiments with simple and complex wavefront distortions to demonstrate our approach as a promising alternative to traditional SHWFS systems, with potential applications in a wide range of fields.
{"title":"Single-pixel wavefront sensing via vectorial polarization modulation","authors":"武男 æ�Ž, 毓 曹, 禹 å®�, 锋æ�° ä¹, å…¨ å­™, 晓军 许","doi":"10.3788/col202321.090008","DOIUrl":"https://doi.org/10.3788/col202321.090008","url":null,"abstract":"The Shack – Hartmann wavefront sensor (SHWFS) is commonly used for its high speed and precision in adaptive optics. However, its performance is limited in low light conditions, particularly when observing faint objects in astronomical applications. Instead of a pixelated detector, we present a new approach for wavefront sensing using a single-pixel detector, which is able to code the spatial position of a light spot array into the polarization dimension and decode the polarization state in the polar coordinate. We propose validation experiments with simple and complex wavefront distortions to demonstrate our approach as a promising alternative to traditional SHWFS systems, with potential applications in a wide range of fields.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135600377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse design on terahertz multilevel diffractive lens based on 3D printing 基于3D打印的太赫兹多层衍射透镜逆设计
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.110006
Chenyu Shi, Yu Wang, Qiongjun Liu, Sai Chen, Weipeng Zhao, Xiaojun Wu, Jierong Cheng, Shengjiang Chang
Terahertz (THz) lenses have numerous applications in imaging and communication systems. Currently, the common THz lenses are still based on the traditional design of a circular convex lens. In this work, we present a method for the design of a 3D-printed multilevel THz lens, taking advantage of the benefits offered by 3D printing technology, including compact size, lightweight construction, and cost-effectiveness. The approach utilizes an inverse design methodology, employing optimization methods to promise accurate performance. To reduce simulation time, we employ the finite-difference time-domain method in cylindrical coordinates for near-field computation and couple it with the Rayleigh–Sommerfeld diffraction theory to address far-field calculations. This technology holds great potential for various applications in the field of THz imaging, sensing, and communications, offering a novel approach to the design and development of functional devices operating in the THz frequency range.
太赫兹(THz)透镜在成像和通信系统中有许多应用。目前,常见的太赫兹透镜仍然基于传统的圆凸透镜设计。在这项工作中,我们提出了一种设计3D打印多层太赫兹透镜的方法,利用3D打印技术提供的优势,包括紧凑的尺寸,轻量化的结构和成本效益。该方法采用逆向设计方法,采用优化方法来保证准确的性能。为了减少模拟时间,我们采用圆柱坐标系下的时域有限差分法进行近场计算,并将其与Rayleigh-Sommerfeld衍射理论相结合进行远场计算。该技术在太赫兹成像、传感和通信领域具有巨大的应用潜力,为设计和开发在太赫兹频率范围内工作的功能器件提供了一种新的方法。
{"title":"Inverse design on terahertz multilevel diffractive lens based on 3D printing","authors":"Chenyu Shi, Yu Wang, Qiongjun Liu, Sai Chen, Weipeng Zhao, Xiaojun Wu, Jierong Cheng, Shengjiang Chang","doi":"10.3788/col202321.110006","DOIUrl":"https://doi.org/10.3788/col202321.110006","url":null,"abstract":"Terahertz (THz) lenses have numerous applications in imaging and communication systems. Currently, the common THz lenses are still based on the traditional design of a circular convex lens. In this work, we present a method for the design of a 3D-printed multilevel THz lens, taking advantage of the benefits offered by 3D printing technology, including compact size, lightweight construction, and cost-effectiveness. The approach utilizes an inverse design methodology, employing optimization methods to promise accurate performance. To reduce simulation time, we employ the finite-difference time-domain method in cylindrical coordinates for near-field computation and couple it with the Rayleigh–Sommerfeld diffraction theory to address far-field calculations. This technology holds great potential for various applications in the field of THz imaging, sensing, and communications, offering a novel approach to the design and development of functional devices operating in the THz frequency range.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated fluorescence excitation, collection, and filtering on a GaN waveguide chip 集成荧光激发,收集,并在GaN波导芯片滤波
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.101203
Jiahui Zhang, Feng Xu, Ran An, Lin Wang, Min Jiang, Guanghui Wang, Yanqing Lu
Fluorescence detection is widely used in biology and medicine, while the realization of on-chip fluorescence detection is vital for the portable and point-of-care test (POCT) application. In this Letter, we propose an efficient fluorescence excitation and collection system using an integrated GaN chip consisting of a slot waveguide and a one-dimensional photonic crystal (1D PC) waveguide. The slot waveguide is used to confine the excitation light for intense light–sample interaction, and the one-trip collection efficiency at the end of slot waveguide is up to 14.65%. More interestingly, due to the introduction of the 1D PC waveguide, the fluorescence signal is directly filtered out, and the excitation light is reflected to the slot waveguide for multiple excitations. Its transmittances for the designed exciting wavelength of 520 nm and the fluorescent wavelength of 612 nm are 0.2% and 85.4%, respectively. Finally, based on numerical analysis, the total fluorescence collection efficiency in our system amounts to 15.93%. It is the first time, to our knowledge, that the concept of an all-in-one-chip fluorescence detection system has been proposed, which paves the way for on-chip fluorescence excitation and collection, and may find potential applications of miniaturized and portable devices for biomedical fluorescence detection.
荧光检测在生物学和医学中有着广泛的应用,而实现片上荧光检测对于便携式和即时检测(POCT)的应用至关重要。在本文中,我们提出了一种高效的荧光激发和收集系统,该系统使用由槽波导和一维光子晶体(1D PC)波导组成的集成GaN芯片。利用狭缝波导限制激发光进行强光样相互作用,狭缝波导末端的单行程收集效率可达14.65%。更有趣的是,由于引入了1D PC波导,荧光信号被直接滤除,激发光被反射到槽波导中进行多次激发。在设计的激发波长520 nm和荧光波长612 nm下,其透过率分别为0.2%和85.4%。最后,通过数值分析,我们的系统的总荧光收集效率达到15.93%。据我们所知,这是第一次提出全芯片荧光检测系统的概念,为片上荧光激发和收集铺平了道路,并可能为生物医学荧光检测的小型化和便携式设备提供潜在的应用。
{"title":"Integrated fluorescence excitation, collection, and filtering on a GaN waveguide chip","authors":"Jiahui Zhang, Feng Xu, Ran An, Lin Wang, Min Jiang, Guanghui Wang, Yanqing Lu","doi":"10.3788/col202321.101203","DOIUrl":"https://doi.org/10.3788/col202321.101203","url":null,"abstract":"Fluorescence detection is widely used in biology and medicine, while the realization of on-chip fluorescence detection is vital for the portable and point-of-care test (POCT) application. In this Letter, we propose an efficient fluorescence excitation and collection system using an integrated GaN chip consisting of a slot waveguide and a one-dimensional photonic crystal (1D PC) waveguide. The slot waveguide is used to confine the excitation light for intense light–sample interaction, and the one-trip collection efficiency at the end of slot waveguide is up to 14.65%. More interestingly, due to the introduction of the 1D PC waveguide, the fluorescence signal is directly filtered out, and the excitation light is reflected to the slot waveguide for multiple excitations. Its transmittances for the designed exciting wavelength of 520 nm and the fluorescent wavelength of 612 nm are 0.2% and 85.4%, respectively. Finally, based on numerical analysis, the total fluorescence collection efficiency in our system amounts to 15.93%. It is the first time, to our knowledge, that the concept of an all-in-one-chip fluorescence detection system has been proposed, which paves the way for on-chip fluorescence excitation and collection, and may find potential applications of miniaturized and portable devices for biomedical fluorescence detection.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136206809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paper-based amorphous Ga2O3 solar-blind photodetector with improved flexibility and stability 纸基非晶态Ga2O3太阳盲光电探测器,具有更好的灵活性和稳定性
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.101601
Hanchi Xia, Tao Zhang, Yuehui Wang, Yaping Qi, Fan Zhang, Zhenping Wu, Yang Zhang
Flexible devices provide advantages such as conformability, portability, and low cost. Paper-based electronics offers a number of advantages for many applications. It is lightweight, inexpensive, and biodegradable, making it an ideal choice for disposable electronics. In this work, we propose a novel configuration of photodetectors using paper as flexible substrates and amorphous Ga2O3 as the active materials, respectively. The photoresponse characteristics are investigated systematically. A decent responsivity yield and a specific detectivity of up to 66 mA/W and 3×1012 Jones were obtained at a low operating voltage of 10 V. The experiments also demonstrate that neither the twisting nor bending deformation can bring obvious performance degradation to the device. This work presents a candidate strategy for the application of conventional paper substrates to low-cost flexible solar-blind photodetectors, showing the potential of being integrated with other materials to create interactive flexible circuits.
柔性设备具有一致性、便携性和低成本等优点。纸质电子产品为许多应用提供了许多优点。它重量轻,价格便宜,可生物降解,是一次性电子产品的理想选择。在这项工作中,我们提出了一种新的光电探测器配置,分别使用纸作为柔性衬底和无定形Ga2O3作为活性材料。系统地研究了其光响应特性。在10 V的低工作电压下获得了体面的响应率产率和高达66 mA/W和3×1012 Jones的特定探测率。实验还表明,扭曲变形和弯曲变形都不会对器件的性能造成明显的影响。这项工作提出了一种将传统纸基板应用于低成本柔性太阳盲光电探测器的候选策略,显示了与其他材料集成以创建交互式柔性电路的潜力。
{"title":"Paper-based amorphous Ga2O3 solar-blind photodetector with improved flexibility and stability","authors":"Hanchi Xia, Tao Zhang, Yuehui Wang, Yaping Qi, Fan Zhang, Zhenping Wu, Yang Zhang","doi":"10.3788/col202321.101601","DOIUrl":"https://doi.org/10.3788/col202321.101601","url":null,"abstract":"Flexible devices provide advantages such as conformability, portability, and low cost. Paper-based electronics offers a number of advantages for many applications. It is lightweight, inexpensive, and biodegradable, making it an ideal choice for disposable electronics. In this work, we propose a novel configuration of photodetectors using paper as flexible substrates and amorphous Ga2O3 as the active materials, respectively. The photoresponse characteristics are investigated systematically. A decent responsivity yield and a specific detectivity of up to 66 mA/W and 3×1012 Jones were obtained at a low operating voltage of 10 V. The experiments also demonstrate that neither the twisting nor bending deformation can bring obvious performance degradation to the device. This work presents a candidate strategy for the application of conventional paper substrates to low-cost flexible solar-blind photodetectors, showing the potential of being integrated with other materials to create interactive flexible circuits.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136207199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of molecular alignment with deep learning-based M-XFROG technique 基于深度学习的M-XFROG技术的分子定位测量
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.120021
Wanchen Tao, Siqi Sun, Lixin He, Yanqing He, Jianchang Hu, Yu Deng, Chengqing Xu, Pengfei Lan, Peixiang Lu
We demonstrate a deep-learning neural network (DNN) method for the measurement of molecular alignment by using the molecular-alignment-based cross-correlation polarization-gating frequency resolved optical gating (M-XFROG) technique. Our network has the capacity for direct measurement of molecular alignment from the FROG traces. In a proof-of-principle experiment, we have demonstrated our method in O2 molecules. With our method, the molecular alignment factor ⟨cos2 θ⟩(t) of O2, impulsively excited by a pump pulse, was directly reconstructed. The accuracy and validity of the reconstruction have been verified by comparison with the simulations based on experimental parameters.
我们展示了一种深度学习神经网络(DNN)方法,通过使用基于分子定位的互相关极化门控频率分辨光门控(M-XFROG)技术来测量分子定位。我们的网络有能力从FROG轨迹直接测量分子排列。在一个原理验证实验中,我们在O2分子中演示了我们的方法。使用我们的方法,O2的分子对齐因子⟨cos2 θ⟩(t)被泵脉冲脉冲激发,直接重建。通过与基于实验参数的仿真对比,验证了重建的准确性和有效性。
{"title":"Measurement of molecular alignment with deep learning-based M-XFROG technique","authors":"Wanchen Tao, Siqi Sun, Lixin He, Yanqing He, Jianchang Hu, Yu Deng, Chengqing Xu, Pengfei Lan, Peixiang Lu","doi":"10.3788/col202321.120021","DOIUrl":"https://doi.org/10.3788/col202321.120021","url":null,"abstract":"We demonstrate a deep-learning neural network (DNN) method for the measurement of molecular alignment by using the molecular-alignment-based cross-correlation polarization-gating frequency resolved optical gating (M-XFROG) technique. Our network has the capacity for direct measurement of molecular alignment from the FROG traces. In a proof-of-principle experiment, we have demonstrated our method in O2 molecules. With our method, the molecular alignment factor ⟨cos2 θ⟩(t) of O2, impulsively excited by a pump pulse, was directly reconstructed. The accuracy and validity of the reconstruction have been verified by comparison with the simulations based on experimental parameters.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136259385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directly modulated 25 Gbaud/s tunable in-series DFB laser array for WDM systems 用于WDM系统的直接调制25gbaud /s可调串联DFB激光阵列
IF 3.5 2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.011403
Zhenxing Sun, Yaguang Wang, Rulei Xiao, Leilei Wang, Yangyang Gong, Y. Chiu, Xiangfei Chen
In this Letter, we proposed and experimentally demonstrated a directly modulated tunable laser based on the multi-wave-length distributed feedback (DFB) laser array. The lasers are placed in series to avoid the usage of an optical combiner and additional power loss. A three-section design is utilized to reduce the interference from other lasers and improve the electro-optic response bandwidth. Besides, the reconstruction-equivalent-chirp technique is used to simplify the grating fabrication and precisely control the grating phase. We realized 12 channels with 100 GHz spacing with high side mode suppression ratios of above 50 dB. The output power of all the channels is above 14 mW. The 3 dB electro-optic bandwidth is above 20 GHz at a bias current of 100 mA for all four lasers. A 25 Gb/s data transmission over a standard single-mode fiber of up to 10 km is demonstrated for all 12 channels, and 50 Gb/s data per wavelength is obtained through the four-level pulse amplitude modulation. The proposed directly modulated tunable in-series DFB laser array shows the potential for a compact and low-cost light source for wavelength division multiplexing (WDM) systems, such as next-generation front-haul networks and passive optical networks.
在本文中,我们提出了一种基于多波长分布反馈(DFB)激光阵列的直接调制可调谐激光器,并进行了实验验证。这些激光器是串联放置的,以避免使用光合并器和额外的功率损失。采用三段式设计,减少了其他激光器的干扰,提高了电光响应带宽。此外,利用重构等效啁啾技术简化了光栅的制作,实现了光栅相位的精确控制。我们实现了12个100ghz间隔的通道,具有50db以上的高侧模抑制比。所有通道的输出功率均在14mw以上。在100毫安的偏置电流下,所有四种激光器的3db电光带宽都在20千兆赫以上。在所有12个通道上,在长达10公里的标准单模光纤上实现了25 Gb/s的数据传输,并通过四电平脉冲调幅获得了每波长50 Gb/s的数据传输。所提出的直接调制可调谐串联DFB激光阵列显示了用于波分复用(WDM)系统(如下一代前传网络和无源光网络)的紧凑低成本光源的潜力。
{"title":"Directly modulated 25 Gbaud/s tunable in-series DFB laser array for WDM systems","authors":"Zhenxing Sun, Yaguang Wang, Rulei Xiao, Leilei Wang, Yangyang Gong, Y. Chiu, Xiangfei Chen","doi":"10.3788/col202321.011403","DOIUrl":"https://doi.org/10.3788/col202321.011403","url":null,"abstract":"In this Letter, we proposed and experimentally demonstrated a directly modulated tunable laser based on the multi-wave-length distributed feedback (DFB) laser array. The lasers are placed in series to avoid the usage of an optical combiner and additional power loss. A three-section design is utilized to reduce the interference from other lasers and improve the electro-optic response bandwidth. Besides, the reconstruction-equivalent-chirp technique is used to simplify the grating fabrication and precisely control the grating phase. We realized 12 channels with 100 GHz spacing with high side mode suppression ratios of above 50 dB. The output power of all the channels is above 14 mW. The 3 dB electro-optic bandwidth is above 20 GHz at a bias current of 100 mA for all four lasers. A 25 Gb/s data transmission over a standard single-mode fiber of up to 10 km is demonstrated for all 12 channels, and 50 Gb/s data per wavelength is obtained through the four-level pulse amplitude modulation. The proposed directly modulated tunable in-series DFB laser array shows the potential for a compact and low-cost light source for wavelength division multiplexing (WDM) systems, such as next-generation front-haul networks and passive optical networks.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"289 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74395291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution Mo Kα X-ray monochromatic backlight imaging using a toroidal crystal 利用环形晶体的高分辨率Mo Kα x射线单色背光成像
2区 物理与天体物理 Q2 OPTICS Pub Date : 2023-01-01 DOI: 10.3788/col202321.103401
Haoxuan Si, Lianqiang Shan, Huiyao Du, Li Jiang, Shengzhen Yi, Weimin Zhou, Zhanshan Wang
Curved crystal imaging is an important means of plasma diagnosis. Due to the short wavelengths of high-energy X rays and the fixed lattice constant of the spherical crystal, it is difficult to apply the spherical crystal in high-energy X-ray imaging. In this study, we have developed a high-energy, high-resolution X-ray imager based on a toroidal crystal that can effectively correct astigmatism. We prepared a Ge 〈5 1 1〉 toroidal crystal for backlighting Mo Kα1 characteristic lines (∼17.48 keV) and verified its high-resolution imaging ability in high-energy X-ray region, achieving a spatial resolution of 5–10 µm in a field of view larger than 1.0 mm.
弯曲晶体成像是诊断血浆疾病的重要手段。由于高能X射线的波长较短,加之球形晶体的晶格常数固定,使其难以应用于高能X射线成像。在这项研究中,我们开发了一种基于环形晶体的高能、高分辨率x射线成像仪,可以有效地纠正像散。我们制备了一个Ge < 51 1 >的环形晶体,用于背光Mo Kα1特征线(~ 17.48 keV),并验证了其在高能x射线区域的高分辨率成像能力,在大于1.0 mm的视场中实现了5 - 10µm的空间分辨率。
{"title":"High-resolution Mo Kα X-ray monochromatic backlight imaging using a toroidal crystal","authors":"Haoxuan Si, Lianqiang Shan, Huiyao Du, Li Jiang, Shengzhen Yi, Weimin Zhou, Zhanshan Wang","doi":"10.3788/col202321.103401","DOIUrl":"https://doi.org/10.3788/col202321.103401","url":null,"abstract":"Curved crystal imaging is an important means of plasma diagnosis. Due to the short wavelengths of high-energy X rays and the fixed lattice constant of the spherical crystal, it is difficult to apply the spherical crystal in high-energy X-ray imaging. In this study, we have developed a high-energy, high-resolution X-ray imager based on a toroidal crystal that can effectively correct astigmatism. We prepared a Ge 〈5 1 1〉 toroidal crystal for backlighting Mo Kα1 characteristic lines (∼17.48 keV) and verified its high-resolution imaging ability in high-energy X-ray region, achieving a spatial resolution of 5–10 µm in a field of view larger than 1.0 mm.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135181733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Chinese Optics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1