A study on entropy generation of hydromagnetic oscillating flow of a diamond-ethylene glycol+water based couple stress nanofluid in a vertical channel in the presence of Joule heating and thermal radiation

IF 0.5 4区 工程技术 Q4 CHEMISTRY, APPLIED Indian Journal of Chemical Technology Pub Date : 2023-01-01 DOI:10.56042/ijct.v30i6.6551
{"title":"A study on entropy generation of hydromagnetic oscillating flow of a diamond-ethylene glycol+water based couple stress nanofluid in a vertical channel in the presence of Joule heating and thermal radiation","authors":"","doi":"10.56042/ijct.v30i6.6551","DOIUrl":null,"url":null,"abstract":"The current work communicates the entropy generation analysis of oscillating flow of magnetohydrodynamic couple stress nanofluid in a vertical channel. The main objective of present study is to examine the entropy analysis of a magnetohydrodynamic couple stress nanofluid. In this study, water and ethylene glycol (50:50) and diamond are used as the base fluid and nanoparticles, respectively. The effects of radiative heat, Ohmic, and viscous dissipation are all considered. By employing the perturbation process, the governing partial differential equations are transformed into the set of ordinary differential equations, which are then deciphered by implementing the Runge-Kutta fourth-order scheme with shooting technique. The obtained outcomes reveal that, amplifying viscous dissipation promising the temperature whereas the reverse is true for the influence of couple stress viscosity and Hartmann number. Heat transfer rate is decelerating with the boost up in Hartmann number at the walls while it is accelerating with the increment in viscous dissipation at the right wall. Entropy is escalating for intensifying viscous dissipation, and thermal radiation whereas the reverse is true for the impression of couple stress viscosity, and volume fraction of nanoparticles. Bejan number is falling for escalating volume fraction of nanoparticles, and viscous dissipation while it is enhancing with escalation in couple stress parameter.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijct.v30i6.6551","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The current work communicates the entropy generation analysis of oscillating flow of magnetohydrodynamic couple stress nanofluid in a vertical channel. The main objective of present study is to examine the entropy analysis of a magnetohydrodynamic couple stress nanofluid. In this study, water and ethylene glycol (50:50) and diamond are used as the base fluid and nanoparticles, respectively. The effects of radiative heat, Ohmic, and viscous dissipation are all considered. By employing the perturbation process, the governing partial differential equations are transformed into the set of ordinary differential equations, which are then deciphered by implementing the Runge-Kutta fourth-order scheme with shooting technique. The obtained outcomes reveal that, amplifying viscous dissipation promising the temperature whereas the reverse is true for the influence of couple stress viscosity and Hartmann number. Heat transfer rate is decelerating with the boost up in Hartmann number at the walls while it is accelerating with the increment in viscous dissipation at the right wall. Entropy is escalating for intensifying viscous dissipation, and thermal radiation whereas the reverse is true for the impression of couple stress viscosity, and volume fraction of nanoparticles. Bejan number is falling for escalating volume fraction of nanoparticles, and viscous dissipation while it is enhancing with escalation in couple stress parameter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在焦耳加热和热辐射作用下,金刚石-乙二醇+水基偶联应力纳米流体在垂直通道中磁振荡流动的熵产研究
本文对磁流体耦合应力纳米流体在垂直通道中的振荡流动进行了熵产分析。本研究的主要目的是研究磁流体动力耦合应力纳米流体的熵分析。在这项研究中,水和乙二醇(50:50)和金刚石分别作为基液和纳米颗粒。考虑了辐射热、欧姆和粘性耗散的影响。利用摄动过程,将控制偏微分方程转化为常微分方程集,利用射击技术实现龙格-库塔四阶格式解译。结果表明,增大黏性耗散对温度的影响较大,而耦合应力黏度和哈特曼数对温度的影响则相反。传热速率随壁面哈特曼数的增大而减小,随右壁面粘性耗散的增大而增大。随着粘性耗散和热辐射的增强,熵增大,而耦合应力黏度和纳米颗粒体积分数的影响则相反。随着纳米颗粒体积分数的增大,贝使数呈下降趋势,黏性耗散随耦合应力参数的增大而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indian Journal of Chemical Technology
Indian Journal of Chemical Technology 工程技术-工程:化工
CiteScore
0.90
自引率
20.00%
发文量
17
审稿时长
6-12 weeks
期刊介绍: Indian Journal of Chemical Technology has established itself as the leading journal in the exciting field of chemical engineering and technology. It is intended for rapid communication of knowledge and experience to engineers and scientists working in the area of research development or practical application of chemical technology. This bimonthly journal includes novel and original research findings as well as reviews in the areas related to – Chemical Engineering, Catalysis, Leather Processing, Polymerization, Membrane Separation, Pharmaceuticals and Drugs, Agrochemicals, Reaction Engineering, Biochemical Engineering, Petroleum Technology, Corrosion & Metallurgy and Applied Chemistry.
期刊最新文献
Green carbon dots from poppy seeds with conjugated hydrogel hybrid films for detection of Fe3+ Functionalization of fullerene with 4-benzo-9-crown-3 ether Methyl orange adsorption by modified montmorillonite nanomaterials: Characterization, kinetic, isotherms and thermodynamic studies Triazole-based C3-symmetric multivalent dendritic architecture as Cu(II) ion sensor Adsorption study on the removal of ciprofloxacin in aqueous solution by an acidic ion exchange resin with bifunctional group
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1