A pair of novel priors for improving and extending the conditional MLE

Pub Date : 2023-11-10 DOI:10.1016/j.jspi.2023.106117
Takemi Yanagimoto , Yoichi Miyata
{"title":"A pair of novel priors for improving and extending the conditional MLE","authors":"Takemi Yanagimoto ,&nbsp;Yoichi Miyata","doi":"10.1016/j.jspi.2023.106117","DOIUrl":null,"url":null,"abstract":"<div><p><span>A Bayesian estimator aiming at improving the conditional MLE is proposed by introducing a pair of priors. After explaining the conditional MLE by the posterior mode under a prior, we define a promising estimator by the </span>posterior mean<span> under a corresponding prior. The prior is asymptotically equivalent to the reference prior in familiar models. Advantages of the present approach include two different optimality properties of the induced estimator, the ease of various extensions and the possible treatments for a finite sample size. The existing approaches are discussed and critiqued.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823000861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Bayesian estimator aiming at improving the conditional MLE is proposed by introducing a pair of priors. After explaining the conditional MLE by the posterior mode under a prior, we define a promising estimator by the posterior mean under a corresponding prior. The prior is asymptotically equivalent to the reference prior in familiar models. Advantages of the present approach include two different optimality properties of the induced estimator, the ease of various extensions and the possible treatments for a finite sample size. The existing approaches are discussed and critiqued.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
一对改进和扩展条件MLE的新先验
通过引入一对先验,提出了一种改进条件最大似然估计的贝叶斯估计。在用先验下的后验模解释条件最大似然后验模后,我们用相应先验下的后验均值定义了一个有希望的估计量。先验等价于我们熟悉的模型中的参考先验。该方法的优点包括诱导估计量的两种不同的最优性,各种扩展的便利性以及有限样本量的可能处理。对现有的方法进行了讨论和批评。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1