{"title":"Adsorptive removal of endocrine disruptor bisphenol A from aqueous environment using sugarcane bagasse derived biochar","authors":"Muthamilselvi Ponnuchamy , Ashish Kapoor , Meenu Mariam Jacob , Anjali Awasthi , Moitraiyee Mukhopadhyay , Shanmugapriya Nandagobu , Akshara Raghav , Deepshika Arvind , Paromita Chakraborty , Sivaraman Prabhakar","doi":"10.1016/j.jtice.2023.105216","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Endocrine-disrupting chemicals, such as bisphenol A (BPA), pose a grave global concern in aqueous environments. Agricultural waste-derived biochar has garnered interest as an eco-friendly, cost-effective adsorbent for wastewater treatment.</div></div><div><h3>Methods</h3><div>Biochar, synthesized by pyrolytic treatment of sugarcane bagasse at 400 °C (BC400), was analyzed for BPA adsorption and physicochemical characteristics. Process parametric studies, scale-up design, and economic assessment were carried out to ascertain the viability of BC400 for BPA removal.</div></div><div><h3>Findings</h3><div>BC400 exhibited a specific surface area of 14.302 m<sup>2</sup> g<sup>−1</sup>, a pore volume of 0.005 cm<sup>3</sup> g<sup>−1</sup>, and a pore radius of 3.133 nm. Scanning electron microscopy of BC400 revealed longitudinal pores attributed to vascular biomass usage. The conversion of feedstock into biochar led to an increase in carbon content. With an O/C ratio of 0.28, BC400 indicated suitability for sequestration. The maximum adsorption capacity of BPA was 32.05 mg g<sup>−1</sup> at pH 6.0. The adsorption mechanism likely involved electrostatic interactions and hydrogen bonding. The adsorption behavior adhered to pseudo-second order kinetics and Freundlich isotherm. BC400 demonstrated potential as an efficacious adsorbent for BPA removal from contaminated water in resource-constrained settings.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"166 ","pages":"Article 105216"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187610702300545X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Endocrine-disrupting chemicals, such as bisphenol A (BPA), pose a grave global concern in aqueous environments. Agricultural waste-derived biochar has garnered interest as an eco-friendly, cost-effective adsorbent for wastewater treatment.
Methods
Biochar, synthesized by pyrolytic treatment of sugarcane bagasse at 400 °C (BC400), was analyzed for BPA adsorption and physicochemical characteristics. Process parametric studies, scale-up design, and economic assessment were carried out to ascertain the viability of BC400 for BPA removal.
Findings
BC400 exhibited a specific surface area of 14.302 m2 g−1, a pore volume of 0.005 cm3 g−1, and a pore radius of 3.133 nm. Scanning electron microscopy of BC400 revealed longitudinal pores attributed to vascular biomass usage. The conversion of feedstock into biochar led to an increase in carbon content. With an O/C ratio of 0.28, BC400 indicated suitability for sequestration. The maximum adsorption capacity of BPA was 32.05 mg g−1 at pH 6.0. The adsorption mechanism likely involved electrostatic interactions and hydrogen bonding. The adsorption behavior adhered to pseudo-second order kinetics and Freundlich isotherm. BC400 demonstrated potential as an efficacious adsorbent for BPA removal from contaminated water in resource-constrained settings.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.