首页 > 最新文献

Journal of the Taiwan Institute of Chemical Engineers最新文献

英文 中文
Superior adsorption of tetracycline onto magnetic rectorite/algal sludge/lake sediment composite
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-19 DOI: 10.1016/j.jtice.2025.106141
Ting Zeng , Rui Liu , Peijiang Zhou , Guiling Gao , Chaoqi Chen

Background

The development of effective technologies for removing tetracycline (TC) from aquatic environments is crucial. In this study, the superior adsorption and separation properties of Fe-RASs for TC were investigated, and the removal mechanism of TC was proposed.

Methods

Fe-RASs were synthesized by metal modification methods (impregnation and co-precipitation) and iron valences (Fe2+, Fe3+, and Fe6+). The structure and physicochemical properties of Fe-RASs were characterized by SEM, XRD, FTIR, BET, XPS, and VSM. The influence of pH and temperature on the adsorption characteristics, as well as the adsorption isotherm and kinetics was investigated.

Significant findings

Fe6+-RAS, prepared by pyrolysis following impregnation with K2FeO4, shows superior TC adsorption capacity (Qm: 191.32 mg/g), presenting an efficient and eco-friendly adsorbent. The adsorption mechanism mainly includes pore filling, surface complexation, π-π interaction, hydrogen bonding and electrostatic interaction. Fe-RASs are easy to recover and reduce secondary contamination. In summary, this study realizes the conversion of solid waste into value-added products for environmental remediation, and is expected to offer valuable references on the synthesis method and appropriate iron sources for the pyrolysis of magnetic materials.
背景开发有效去除水生环境中四环素(TC)的技术至关重要。方法采用金属改性(浸渍法和共沉淀法)和铁价(Fe2+、Fe3+和Fe6+)合成了Fe-RASs。通过扫描电镜、X射线衍射、傅立叶变换红外光谱、BET、XPS和VSM对Fe-RASs的结构和理化性质进行了表征。重要发现用 K2FeO4 浸渍后热解制备的 Fe6+-RAS 具有优异的 TC 吸附能力(Qm:191.32 mg/g),是一种高效、环保的吸附剂。吸附机理主要包括孔隙填充、表面络合、π-π相互作用、氢键和静电作用。Fe-RAS 易于回收,可减少二次污染。总之,本研究实现了固体废弃物向环境修复增值产品的转化,有望为磁性材料热解的合成方法和合适的铁源提供有价值的参考。
{"title":"Superior adsorption of tetracycline onto magnetic rectorite/algal sludge/lake sediment composite","authors":"Ting Zeng ,&nbsp;Rui Liu ,&nbsp;Peijiang Zhou ,&nbsp;Guiling Gao ,&nbsp;Chaoqi Chen","doi":"10.1016/j.jtice.2025.106141","DOIUrl":"10.1016/j.jtice.2025.106141","url":null,"abstract":"<div><h3>Background</h3><div>The development of effective technologies for removing tetracycline (TC) from aquatic environments is crucial. In this study, the superior adsorption and separation properties of Fe-RASs for TC were investigated, and the removal mechanism of TC was proposed.</div></div><div><h3>Methods</h3><div>Fe-RASs were synthesized by metal modification methods (impregnation and co-precipitation) and iron valences (Fe<sup>2+</sup>, Fe<sup>3+</sup>, and Fe<sup>6+</sup>). The structure and physicochemical properties of Fe-RASs were characterized by SEM, XRD, FTIR, BET, XPS, and VSM. The influence of pH and temperature on the adsorption characteristics, as well as the adsorption isotherm and kinetics was investigated.</div></div><div><h3>Significant findings</h3><div>Fe<sup>6+</sup>-RAS, prepared by pyrolysis following impregnation with K<sub>2</sub>FeO<sub>4</sub>, shows superior TC adsorption capacity (Q<sub>m</sub>: 191.32 mg/g), presenting an efficient and eco-friendly adsorbent. The adsorption mechanism mainly includes pore filling, surface complexation, π-π interaction, hydrogen bonding and electrostatic interaction. Fe-RASs are easy to recover and reduce secondary contamination. In summary, this study realizes the conversion of solid waste into value-added products for environmental remediation, and is expected to offer valuable references on the synthesis method and appropriate iron sources for the pyrolysis of magnetic materials.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106141"},"PeriodicalIF":5.5,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing physical, mechanical, and durability properties of slag-based geopolymers through ceramic waste incorporation: A comprehensive optimization study
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-19 DOI: 10.1016/j.jtice.2025.106144
Amirouche Berkouche , Ahmed Abderraouf Belkadi , Lysa Benaddache , Tahar Tayebi , Salima Aggoun

Background

The demand for sustainable construction materials has driven research into geopolymer mortars (GPs) as an alternative to cement-based materials. This study explores the use of ceramic waste powder (CWP) as a partial replacement for ground blast furnace slag (GBFS) in GPs, optimizing mix design to enhance workability, mechanical performance, and durability. The influence of CWP content and activator-to-precursor (Ac/Pr) ratio was systematically evaluated.

Methods

Nine GP mixtures were formulated using a central composite design (CCD), varying CWP content (0–25 %) and Ac/Pr ratio (0.7–0.75). Workability was assessed via slump test, compressive strength at 7 and 28 days, and water absorption to evaluate porosity. Sulfuric acid resistance was tested after 60-day immersion in a 3.5 % acid solution. Phase composition was analyzed using FTIR and SEM/EDX, and desirability optimization identified the optimal mix.

Significant Findings

Increasing CWP content improved workability and long-term compressive strength, with the optimal mix (21.693 % CWP, Ac/Pr = 0.725) achieving 86.343 MPa at 28 days and 6.093 % water absorption. CWP enhanced acid resistance, reducing strength loss to 35.531 % due to a stable aluminosilicate network. FTIR confirmed degradation mechanisms, including decalcification and dealumination. The study highlights CWP's potential in GPs, balancing workability, strength, and durability. Its enhanced resistance to acidic environments makes it a promising material for sustainable construction, particularly in wastewater treatment infrastructures and industrial flooring exposed to harsh chemical conditions.
{"title":"Enhancing physical, mechanical, and durability properties of slag-based geopolymers through ceramic waste incorporation: A comprehensive optimization study","authors":"Amirouche Berkouche ,&nbsp;Ahmed Abderraouf Belkadi ,&nbsp;Lysa Benaddache ,&nbsp;Tahar Tayebi ,&nbsp;Salima Aggoun","doi":"10.1016/j.jtice.2025.106144","DOIUrl":"10.1016/j.jtice.2025.106144","url":null,"abstract":"<div><h3>Background</h3><div>The demand for sustainable construction materials has driven research into geopolymer mortars (GPs) as an alternative to cement-based materials. This study explores the use of ceramic waste powder (CWP) as a partial replacement for ground blast furnace slag (GBFS) in GPs, optimizing mix design to enhance workability, mechanical performance, and durability. The influence of CWP content and activator-to-precursor (Ac/Pr) ratio was systematically evaluated.</div></div><div><h3>Methods</h3><div>Nine GP mixtures were formulated using a central composite design (CCD), varying CWP content (0–25 %) and Ac/Pr ratio (0.7–0.75). Workability was assessed via slump test, compressive strength at 7 and 28 days, and water absorption to evaluate porosity. Sulfuric acid resistance was tested after 60-day immersion in a 3.5 % acid solution. Phase composition was analyzed using FTIR and SEM/EDX, and desirability optimization identified the optimal mix.</div></div><div><h3>Significant Findings</h3><div>Increasing CWP content improved workability and long-term compressive strength, with the optimal mix (21.693 % CWP, Ac/Pr = 0.725) achieving 86.343 MPa at 28 days and 6.093 % water absorption. CWP enhanced acid resistance, reducing strength loss to 35.531 % due to a stable aluminosilicate network. FTIR confirmed degradation mechanisms, including decalcification and dealumination. The study highlights CWP's potential in GPs, balancing workability, strength, and durability. Its enhanced resistance to acidic environments makes it a promising material for sustainable construction, particularly in wastewater treatment infrastructures and industrial flooring exposed to harsh chemical conditions.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106144"},"PeriodicalIF":5.5,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143847634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the pore structure and surface properties of polysulfone membrane on the resultant polyamide layer and the performance of the reverse osmosis membrane
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-19 DOI: 10.1016/j.jtice.2025.106147
Lu Gao , Yingying Zhao , Xiaowen Huo , Haitao Wang , Jun Li , Na Chang

Background

Polyamide (PA) thin-film composite reverse osmosis (RO) membranes are mainly composed of nonwoven fabric layer, polysulfone (PSF) ultrafiltration support layer, and polyamide separation layer. The structure of PSF membrane plays a decisive role for the properties and morphology of the PA layer. However, the properties and structural parameters of PSF membranes suitable for fabricating high-performance RO membrane are ambiguous, and the relationship between the structure of PSF membrane and the property of PA layer are still unclear.

Methods

Here, PSF membranes with different cross-sectional structures, pore-size distributions, surface porosity, and hydrophilicity were prepared by introducing PEG with different molecular weight and concentration, which altered the viscosity of the casting solution and the solvent/nonsolvent exchange rate. Based on these PSF membranes, RO membranes were fabricated to investigate the impact of PSF membrane on the structure of PA layer.

Significant findings

PSF membrane with larger pore-size (> 100 nm) and hydrophobic surface resulted to defects of the PA layer due to the uneven dispersion of the MPD-containing aqueous solution, while PSF membrane with relative high porosity (3–5 %) and hydrophilic surface lead to irregular PA layer originated from excessive penetration of aqueous solution to the PSF membrane. Thus, PSF membranes suitable for the formation of uniform and dense PA thin-layer should have a relatively dense cross-sectional structure, smaller pore-size (40–60 nm) and lower surface porosity (<3 %).
{"title":"Investigation of the pore structure and surface properties of polysulfone membrane on the resultant polyamide layer and the performance of the reverse osmosis membrane","authors":"Lu Gao ,&nbsp;Yingying Zhao ,&nbsp;Xiaowen Huo ,&nbsp;Haitao Wang ,&nbsp;Jun Li ,&nbsp;Na Chang","doi":"10.1016/j.jtice.2025.106147","DOIUrl":"10.1016/j.jtice.2025.106147","url":null,"abstract":"<div><h3>Background</h3><div>Polyamide (PA) thin-film composite reverse osmosis (RO) membranes are mainly composed of nonwoven fabric layer, polysulfone (PSF) ultrafiltration support layer, and polyamide separation layer. The structure of PSF membrane plays a decisive role for the properties and morphology of the PA layer. However, the properties and structural parameters of PSF membranes suitable for fabricating high-performance RO membrane are ambiguous, and the relationship between the structure of PSF membrane and the property of PA layer are still unclear.</div></div><div><h3>Methods</h3><div>Here, PSF membranes with different cross-sectional structures, pore-size distributions, surface porosity, and hydrophilicity were prepared by introducing PEG with different molecular weight and concentration, which altered the viscosity of the casting solution and the solvent/nonsolvent exchange rate. Based on these PSF membranes, RO membranes were fabricated to investigate the impact of PSF membrane on the structure of PA layer.</div></div><div><h3>Significant findings</h3><div>PSF membrane with larger pore-size (&gt; 100 nm) and hydrophobic surface resulted to defects of the PA layer due to the uneven dispersion of the MPD-containing aqueous solution, while PSF membrane with relative high porosity (3–5 %) and hydrophilic surface lead to irregular PA layer originated from excessive penetration of aqueous solution to the PSF membrane. Thus, PSF membranes suitable for the formation of uniform and dense PA thin-layer should have a relatively dense cross-sectional structure, smaller pore-size (40–60 nm) and lower surface porosity (&lt;3 %).</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"173 ","pages":"Article 106147"},"PeriodicalIF":5.5,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust hollow fiber nanofiltration membranes with high stability for wastewater process by dynamic layer-by-layer assembly
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-19 DOI: 10.1016/j.jtice.2025.106146
Liu Ye , Yingbo Chen , Linzhe Xu , Shuang Fu , Xintong Wu
The stability of nanofiltration membranes in wastewater treatment represents a primary constraint to their development. In this work, hollow fiber nanofiltration membranes with robust stability were prepared by dynamic layer-by-layer (LBL) assembly of poly (sodium 4-benzenesulfonate) (PSS) and poly (diallyldimethyl ammonium chloride) (PDDA) on the internal surface of poly (ether sulfone) (PES) hollow fiber ultrafiltration membranes. The effect of different coating layers on the membrane performance was assessed, and the findings revealed that the LBL membrane with the optimal coating layer of 2 had a pure water permeance of 9.59 L m−2 h−1 bar−1 with rejection of 92.11 % and 87.28 % for Na2SO4 and MgSO4, respectively. Consistent pure water permeance was attained even after four cycles of anti-fouling testing, at varied pH values and backwashing. In the actual wastewater treatment, the membrane still maintained a stable permeance, the rejection of Ca2+, Mg2+ and SO42− ions in the wastewater were 81.25 %, 87.81 % and 76.79 % respectively, and the rejection of total organic carbon reached up to 92.90 %. In summary, the membranes that had been developed exhibit economic efficiency and held significant potential for use in industrial production and real wastewater treatment procedures.
纳滤膜在废水处理中的稳定性是制约其发展的主要因素。在这项工作中,通过在聚醚砜(PES)中空纤维超滤膜的内表面动态逐层(LBL)组装聚(4-苯磺酸钠)(PSS)和聚(二烯丙基二甲基氯化铵)(PDDA),制备了具有强大稳定性的中空纤维纳滤膜。评估了不同涂层对膜性能的影响,结果表明,最佳涂层为 2 的 LBL 膜的纯水渗透率为 9.59 L m-2 h-1 bar-1,对 Na2SO4 和 MgSO4 的截留率分别为 92.11 % 和 87.28 %。即使在不同的 pH 值和反冲洗条件下进行了四次防污测试,也能获得稳定的纯水渗透率。在实际的废水处理中,膜仍能保持稳定的渗透率,对废水中 Ca2+、Mg2+ 和 SO42- 离子的去除率分别为 81.25%、87.81% 和 76.79%,对总有机碳的去除率高达 92.90%。总之,所开发的膜具有经济效益,在工业生产和实际废水处理程序中具有巨大的应用潜力。
{"title":"Robust hollow fiber nanofiltration membranes with high stability for wastewater process by dynamic layer-by-layer assembly","authors":"Liu Ye ,&nbsp;Yingbo Chen ,&nbsp;Linzhe Xu ,&nbsp;Shuang Fu ,&nbsp;Xintong Wu","doi":"10.1016/j.jtice.2025.106146","DOIUrl":"10.1016/j.jtice.2025.106146","url":null,"abstract":"<div><div>The stability of nanofiltration membranes in wastewater treatment represents a primary constraint to their development. In this work, hollow fiber nanofiltration membranes with robust stability were prepared by dynamic layer-by-layer (LBL) assembly of poly (sodium 4-benzenesulfonate) (PSS) and poly (diallyldimethyl ammonium chloride) (PDDA) on the internal surface of poly (ether sulfone) (PES) hollow fiber ultrafiltration membranes. The effect of different coating layers on the membrane performance was assessed, and the findings revealed that the LBL membrane with the optimal coating layer of 2 had a pure water permeance of 9.59 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup> with rejection of 92.11 % and 87.28 % for Na<sub>2</sub>SO<sub>4</sub> and MgSO<sub>4</sub>, respectively. Consistent pure water permeance was attained even after four cycles of anti-fouling testing, at varied pH values and backwashing. In the actual wastewater treatment, the membrane still maintained a stable permeance, the rejection of Ca<sup>2+</sup>, Mg<sup>2+</sup> and SO<sub>4</sub><sup>2−</sup> ions in the wastewater were 81.25 %, 87.81 % and 76.79 % respectively, and the rejection of total organic carbon reached up to 92.90 %. In summary, the membranes that had been developed exhibit economic efficiency and held significant potential for use in industrial production and real wastewater treatment procedures.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106146"},"PeriodicalIF":5.5,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of alkaline protease modified ALPs-V2O5/MCM-41 nanocomposite and their multifunctional applications as an efficient photocatalytic, antibacterial and DPPH radicals stabilizing agent
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-17 DOI: 10.1016/j.jtice.2025.106136
Khalil ur Rehman , Imen Zghab , Mohammed Alissa , Kamran Tahir , Amira K. Hajri , Ferjeni Zouidi , Abdullah Alghamdi , Suad A. Alghamdi , Mohammed A. Alshehri , Alaa S. Alhegaili

Background

The development of eco-friendly and sustainable nanomaterials is crucial for environmental safety and biomedical applications. This study presents a novel approach to synthesizing vanadium oxide-doped MCM-41 nanocomposites (V₂O₅/MCM-41) using an alkaline protease (ALPs) extracted from Phalaris minor seeds.

Method

The ALPs-assisted synthesis method was employed for the first time to fabricate V₂O₅/MCM-41 nanocomposites, and their physicochemical properties were characterized to determine size, morphology, and crystallinity.

Significant findings

The synthesized ALPs-V₂O₅/MCM-41 nanocomposites exhibited outstanding photocatalytic performance, achieving 97 % degradation of bromothymol blue (BTB) within 50 min of irradiation. Additionally, the synthesized nanocomposites exhibited strong antibacterial properties against Escherichia coli and Staphylococcus aureus, with inhibition zones measuring between 22(±0.3) mm and 31(±0.4) mm under both illuminated and non-illuminated conditions. Moreover, they exhibited remarkable antioxidant properties, with an 88 % scavenging efficacy against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals.

Conclusion

These findings highlight the potential of ALPs-V₂O₅/MCM-41 nanocomposites as a sustainable and multifunctional material for environmental remediation and antimicrobial applications, paving the way for further research in eco-friendly nanotechnology.
{"title":"Synthesis of alkaline protease modified ALPs-V2O5/MCM-41 nanocomposite and their multifunctional applications as an efficient photocatalytic, antibacterial and DPPH radicals stabilizing agent","authors":"Khalil ur Rehman ,&nbsp;Imen Zghab ,&nbsp;Mohammed Alissa ,&nbsp;Kamran Tahir ,&nbsp;Amira K. Hajri ,&nbsp;Ferjeni Zouidi ,&nbsp;Abdullah Alghamdi ,&nbsp;Suad A. Alghamdi ,&nbsp;Mohammed A. Alshehri ,&nbsp;Alaa S. Alhegaili","doi":"10.1016/j.jtice.2025.106136","DOIUrl":"10.1016/j.jtice.2025.106136","url":null,"abstract":"<div><h3>Background</h3><div>The development of eco-friendly and sustainable nanomaterials is crucial for environmental safety and biomedical applications. This study presents a novel approach to synthesizing vanadium oxide-doped MCM-41 nanocomposites (V₂O₅/MCM-41) using an alkaline protease (ALPs) extracted from <em>Phalaris minor</em> seeds.</div></div><div><h3>Method</h3><div>The ALPs-assisted synthesis method was employed for the first time to fabricate V₂O₅/MCM-41 nanocomposites, and their physicochemical properties were characterized to determine size, morphology, and crystallinity.</div></div><div><h3>Significant findings</h3><div>The synthesized ALPs-V₂O₅/MCM-41 nanocomposites exhibited outstanding photocatalytic performance, achieving 97 % degradation of bromothymol blue (BTB) within 50 min of irradiation. Additionally, the synthesized nanocomposites exhibited strong antibacterial properties against <em>Escherichia coli</em> and Staphylococcus aureus, with inhibition zones measuring between 22(±0.3) mm and 31(±0.4) mm under both illuminated and non-illuminated conditions. Moreover, they exhibited remarkable antioxidant properties, with an 88 % scavenging efficacy against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals.</div></div><div><h3>Conclusion</h3><div>These findings highlight the potential of ALPs-V₂O₅/MCM-41 nanocomposites as a sustainable and multifunctional material for environmental remediation and antimicrobial applications, paving the way for further research in eco-friendly nanotechnology.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106136"},"PeriodicalIF":5.5,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143844307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced efficiency of superhydrophobic coatings: A comparative analysis between dip and spray techniques using octadecyltrichlorosilane
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-17 DOI: 10.1016/j.jtice.2025.106150
Darren Yi Sern Low , Kristian Hendrata , Chern Leing Lee , Sivakumar Manickam , Siah Ying Tang

Background

Superhydrophobic surfaces with water contact angles (WCAs) of 150° or higher have drawn significant attention due to their exceptional water-repellent properties. Despite their potential, the fabrication of such surfaces is often hindered by complex, multi-step processes. This study presents a facile, scalable approach for generating superhydrophobic coatings using an octadecyltrichlorosilane (OTS) and ethanol (EtOH) mixture, all under ambient conditions.

Methods

Glass substrates were coated using both spray and dip coating techniques, followed by a detailed comparative analysis of the resulting surface properties. The same coating solution was then applied to aluminium, copper, plastic, and paper substrates, using both spray and dip methods.

Significant Findings

Coatings produced via spraying exhibited significantly higher surface roughness and achieved superhydrophobicity after just 11 cycles, an outcome unattainable by the dipping method, even with additional cycles. The OTS concentration and the number of coating cycles were key factors influencing surface morphology and topography. Notably, the aging of the OTS coating solution was found to affect the hydrophobicity and transparency of the substrate adversely. After just 3 h of aging, WCAs dropped below the superhydrophobic threshold, and light transmittance decreased to about 4 %. Despite differences in substrate properties, the spray coating method successfully conferred surface superhydrophobicity to a variety of materials.
{"title":"Enhanced efficiency of superhydrophobic coatings: A comparative analysis between dip and spray techniques using octadecyltrichlorosilane","authors":"Darren Yi Sern Low ,&nbsp;Kristian Hendrata ,&nbsp;Chern Leing Lee ,&nbsp;Sivakumar Manickam ,&nbsp;Siah Ying Tang","doi":"10.1016/j.jtice.2025.106150","DOIUrl":"10.1016/j.jtice.2025.106150","url":null,"abstract":"<div><h3>Background</h3><div>Superhydrophobic surfaces with water contact angles (WCAs) of 150° or higher have drawn significant attention due to their exceptional water-repellent properties. Despite their potential, the fabrication of such surfaces is often hindered by complex, multi-step processes. This study presents a facile, scalable approach for generating superhydrophobic coatings using an octadecyltrichlorosilane (OTS) and ethanol (EtOH) mixture, all under ambient conditions.</div></div><div><h3>Methods</h3><div>Glass substrates were coated using both spray and dip coating techniques, followed by a detailed comparative analysis of the resulting surface properties. The same coating solution was then applied to aluminium, copper, plastic, and paper substrates, using both spray and dip methods.</div></div><div><h3>Significant Findings</h3><div>Coatings produced via spraying exhibited significantly higher surface roughness and achieved superhydrophobicity after just 11 cycles, an outcome unattainable by the dipping method, even with additional cycles. The OTS concentration and the number of coating cycles were key factors influencing surface morphology and topography. Notably, the aging of the OTS coating solution was found to affect the hydrophobicity and transparency of the substrate adversely. After just 3 h of aging, WCAs dropped below the superhydrophobic threshold, and light transmittance decreased to about 4 %. Despite differences in substrate properties, the spray coating method successfully conferred surface superhydrophobicity to a variety of materials.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106150"},"PeriodicalIF":5.5,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143844308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced analysis of flow characteristics and thermal performance in multiple jet impingements: Effects of varying jet heights and spacings 强化分析多射流撞击的流动特性和热性能:不同射流高度和间距的影响
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-15 DOI: 10.1016/j.jtice.2025.106132
Jin Zhang , Yong Li , Jun Xia , Yingchun Zhang , Jiajie Zhang , Bengt Sunden , Gongnan Xie

Background

Jet arrays are widely recognized as highly efficient cooling techniques. The focus of ongoing research has been on maximizing their heat transfer efficiency within confined spaces.

Methods

Experimental studies and numerical simulations have been conducted to investigate the jet impingements at varying heights (Hc) and hole spacing (dj) on circular jets within cooling channels. Single, two, and three jets are utilized, respectively, and jet holes possess a diameter (d) of 2 mm. The Reynolds number (Re) ranges from 72,673 to 145,346, and the dimensionless distance of the jet spacing (dj/d) and the height to the target (Hc/d) varies between 3 and 5.

Significant finding

Multiple jets generate significant turbulent and mixed flow patterns, with their heat transfer performance being influenced by various factors such as Hc, dj, Re, and jet interactions. The heat transfer performance of two jets outperforms that of three jets, achieving its peak Nusselt number (Nu) value at Re =145,364, dj/d = 3, and Hc/d = 5. A thorough discussion is conducted on the dimensionless parameter Hc/dj. By appropriately adjusting Hc/dj within a suitable range, it is possible to achieve more favorable flow dynamics, leading to enhanced cooling performance of the jet system.
{"title":"Enhanced analysis of flow characteristics and thermal performance in multiple jet impingements: Effects of varying jet heights and spacings","authors":"Jin Zhang ,&nbsp;Yong Li ,&nbsp;Jun Xia ,&nbsp;Yingchun Zhang ,&nbsp;Jiajie Zhang ,&nbsp;Bengt Sunden ,&nbsp;Gongnan Xie","doi":"10.1016/j.jtice.2025.106132","DOIUrl":"10.1016/j.jtice.2025.106132","url":null,"abstract":"<div><h3>Background</h3><div>Jet arrays are widely recognized as highly efficient cooling techniques. The focus of ongoing research has been on maximizing their heat transfer efficiency within confined spaces.</div></div><div><h3>Methods</h3><div>Experimental studies and numerical simulations have been conducted to investigate the jet impingements at varying heights (<em>H</em><sub>c</sub>) and hole spacing (<em>d</em><sub>j</sub>) on circular jets within cooling channels. Single, two, and three jets are utilized, respectively, and jet holes possess a diameter (<em>d</em>) of 2 mm. The Reynolds number (<em>Re</em>) ranges from 72,673 to 145,346, and the dimensionless distance of the jet spacing (<em>d</em><sub>j</sub>/<em>d</em>) and the height to the target (<em>H</em><sub>c</sub>/<em>d</em>) varies between 3 and 5.</div></div><div><h3>Significant finding</h3><div>Multiple jets generate significant turbulent and mixed flow patterns, with their heat transfer performance being influenced by various factors such as <em>H</em><sub>c</sub>, <em>d</em><sub>j</sub>, <em>Re</em>, and jet interactions. The heat transfer performance of two jets outperforms that of three jets, achieving its peak Nusselt number (<em>Nu</em>) value at <em>Re</em> =145,364, <em>d</em><sub>j</sub>/<em>d</em> = 3, and <em>H</em><sub>c</sub>/<em>d</em> = 5. A thorough discussion is conducted on the dimensionless parameter <em>H</em><sub>c</sub>/<em>d</em><sub>j</sub>. By appropriately adjusting <em>H</em><sub>c</sub>/<em>d</em><sub>j</sub> within a suitable range, it is possible to achieve more favorable flow dynamics, leading to enhanced cooling performance of the jet system.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106132"},"PeriodicalIF":5.5,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143828438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mn and Br co-substitution CsPbI3 perovskite quantum dots used for white light-emitting diodes
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-15 DOI: 10.1016/j.jtice.2025.106139
Zhe-Cheng Li , Shi-Hong Xu , Jyh-Chiang Jiang , Liang-Yih Chen

Background

CsPX₃ perovskite quantum dots (PQDs) have garnered considerable research interest due to their excellent fluorescent properties and simple synthesis process. However, the α-cubic phase CsPbI₃ PQDs are prone to transforming into the non-luminescent δ-orthorhombic phase, which poses a significant challenge to their practical application in light-emitting devices.

Method

In this study, red-emitting CsPbI₃ quantum dots (PQDs) were synthesized via the hot-injection method, with Mn and Br co-substituted at the B-site and X-site of the CsPbI₃ lattice. Furthermore, ab initio molecular dynamics (AIMD) simulations confirmed the robust stability of CsMnₓPb₁₋ₓ(BrᵧI₁₋y)₃ PQDs under sunlight exposure, corroborating the experimental findings.

Significant findings

The CsMnₓPb₁₋ₓ(BryI₁₋y)₃ PQDs exhibited a PLQY of 96.3 %, retaining 87 % of their initial value after five months of storage. AIMD simulations revealed that the CsMnₓPb₁₋ₓ(BryI₁₋y)₃ system underwent minimal structural deformation and effectively suppressed Pb dimer formation. Furthermore, the silyl group of the (3-aminopropyl)triethoxysilane (APTES) ligand used in the synthesis reacted with tetramethyl orthosilicate (TMOS) to form a dense silica (SiOₓ) encapsulation shell. Finally, a white light-emitting diode (WLED) was fabricated using red-emitting CsMnₓPb₁₋ₓ(BrᵧI₁₋ᵧ)₃ PQDs@SiOₓ, green-emitting CsPbBr₃ PQDs@SiOₓ, and a blue-emitting InGaN-based chip. The WLED exhibited CIE 1931 chromaticity coordinates of (0.337, 0.336) and achieved a color gamut covering nearly 128 % of the NTSC standard.
{"title":"Mn and Br co-substitution CsPbI3 perovskite quantum dots used for white light-emitting diodes","authors":"Zhe-Cheng Li ,&nbsp;Shi-Hong Xu ,&nbsp;Jyh-Chiang Jiang ,&nbsp;Liang-Yih Chen","doi":"10.1016/j.jtice.2025.106139","DOIUrl":"10.1016/j.jtice.2025.106139","url":null,"abstract":"<div><h3>Background</h3><div>CsPX₃ perovskite quantum dots (PQDs) have garnered considerable research interest due to their excellent fluorescent properties and simple synthesis process. However, the α-cubic phase CsPbI₃ PQDs are prone to transforming into the non-luminescent δ-orthorhombic phase, which poses a significant challenge to their practical application in light-emitting devices.</div></div><div><h3>Method</h3><div>In this study, red-emitting CsPbI₃ quantum dots (PQDs) were synthesized via the hot-injection method, with Mn and Br co-substituted at the B-site and X-site of the CsPbI₃ lattice. Furthermore, ab initio molecular dynamics (AIMD) simulations confirmed the robust stability of CsMnₓPb₁₋ₓ(BrᵧI₁₋<sub>y</sub>)₃ PQDs under sunlight exposure, corroborating the experimental findings.</div></div><div><h3>Significant findings</h3><div>The CsMnₓPb₁₋ₓ(Br<sub>y</sub>I₁₋<sub>y</sub>)₃ PQDs exhibited a PLQY of 96.3 %, retaining 87 % of their initial value after five months of storage. AIMD simulations revealed that the CsMnₓPb₁₋ₓ(Br<sub>y</sub>I₁₋<sub>y</sub>)₃ system underwent minimal structural deformation and effectively suppressed Pb dimer formation. Furthermore, the silyl group of the (3-aminopropyl)triethoxysilane (APTES) ligand used in the synthesis reacted with tetramethyl orthosilicate (TMOS) to form a dense silica (SiOₓ) encapsulation shell. Finally, a white light-emitting diode (WLED) was fabricated using red-emitting CsMnₓPb₁₋ₓ(BrᵧI₁₋ᵧ)₃ PQDs@SiOₓ, green-emitting CsPbBr₃ PQDs@SiOₓ, and a blue-emitting InGaN-based chip. The WLED exhibited CIE 1931 chromaticity coordinates of (0.337, 0.336) and achieved a color gamut covering nearly 128 % of the NTSC standard.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106139"},"PeriodicalIF":5.5,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143834764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-Friendly halogen-free composite for humidity control: Application in environmental humidity regulation
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-15 DOI: 10.1016/j.jtice.2025.106143
Jiancong Fu , Gang Lv , Ting Li , Minchen Yu , Teng Ma , Hailiang Yang , Bin Wang , Yang Zhou , Hailing Zhen , Liling Jia , Zhen Li , Zhiqin Peng

Background

The demand for effective indoor humidity control has led to the development of innovative materials, yet many existing solutions are limited by the release of harmful substances during production and high costs.

Methods

To address these limitations, we developed an environmentally friendly composite material composed of sodium alginate, silica gel, and inorganic salts. This halogen-free composite demonstrates high moisture absorption rates and rapid response to humidity fluctuations, making it ideal for application in artifact preservation, food storage, and electronics protection. Various analytical techniques, including scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller specific surface area testing, were employed to characterize the structural properties and composition of the material.

Significant Findings

Our findings reveal that the composite can stabilize air humidity between 65 % and 70 % relative humidity (RH) at 25 °C within 4 h and maintain this level for over 25 h. The material also exhibits a high moisture absorption capacity of up to 448.96 % of its weight, along with notable efficiency in moisture desorption.
{"title":"Eco-Friendly halogen-free composite for humidity control: Application in environmental humidity regulation","authors":"Jiancong Fu ,&nbsp;Gang Lv ,&nbsp;Ting Li ,&nbsp;Minchen Yu ,&nbsp;Teng Ma ,&nbsp;Hailiang Yang ,&nbsp;Bin Wang ,&nbsp;Yang Zhou ,&nbsp;Hailing Zhen ,&nbsp;Liling Jia ,&nbsp;Zhen Li ,&nbsp;Zhiqin Peng","doi":"10.1016/j.jtice.2025.106143","DOIUrl":"10.1016/j.jtice.2025.106143","url":null,"abstract":"<div><h3>Background</h3><div>The demand for effective indoor humidity control has led to the development of innovative materials, yet many existing solutions are limited by the release of harmful substances during production and high costs.</div></div><div><h3>Methods</h3><div>To address these limitations, we developed an environmentally friendly composite material composed of sodium alginate, silica gel, and inorganic salts. This halogen-free composite demonstrates high moisture absorption rates and rapid response to humidity fluctuations, making it ideal for application in artifact preservation, food storage, and electronics protection. Various analytical techniques, including scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller specific surface area testing, were employed to characterize the structural properties and composition of the material.</div></div><div><h3>Significant Findings</h3><div>Our findings reveal that the composite can stabilize air humidity between 65 % and 70 % relative humidity (RH) at 25 °C within 4 h and maintain this level for over 25 h. The material also exhibits a high moisture absorption capacity of up to 448.96 % of its weight, along with notable efficiency in moisture desorption.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106143"},"PeriodicalIF":5.5,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143828439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the anti-corrosive performance of an epoxy coating by ionic liquid modified layered double hydroxide nanocontainer
IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-04-13 DOI: 10.1016/j.jtice.2025.106140
Kenan Sun , Yingxue Liu , Jiaqian Duan , Ya Li , Xugeng Guo

Background

Functionalized composite coatings play a key role in protecting metals and alloys against corrosion in harsh environments.

Methods

Layered double hydroxide (LDH) modified with choline benzoate ionic liquid is successfully fabricated through coprecipitation and ion-exchange strategies, and then incorporated into an epoxy to generate the CB-LDH/EP composite coating. The anti-corrosive and self-healing abilities of the CB-LDH/EP are comprehensively evaluated.

Significant findings

The addition of CB-LDH active nanocontainer induces a clear increase in the polarization resistance of the coatings (from 9.36 × 106 to 4.35 × 108 Ω cm2). Moreover, the localized corrosion of the coating surface can be considerably retarded according to the long-term immersion experiments. Such an obvious enhancement in the corrosion resistance is attributed to the synergistic mechanism between the components of the polymer coating. The inherent lamellar structures of LDH enhance the physical barrier effect of the coating. Benefiting from the outstanding ion-exchange behavior, the LDH can serve as a storage station for corrosive anions like chloridion, and simultaneously the released benzoate anions from LDH galleries play a role of active corrosion protection. In addition, the choline cations can be adsorbed to the LDH surface because of their polar groups, indicative of a further improvement in the anti-corrosive performance of the coating.
{"title":"Improving the anti-corrosive performance of an epoxy coating by ionic liquid modified layered double hydroxide nanocontainer","authors":"Kenan Sun ,&nbsp;Yingxue Liu ,&nbsp;Jiaqian Duan ,&nbsp;Ya Li ,&nbsp;Xugeng Guo","doi":"10.1016/j.jtice.2025.106140","DOIUrl":"10.1016/j.jtice.2025.106140","url":null,"abstract":"<div><h3>Background</h3><div>Functionalized composite coatings play a key role in protecting metals and alloys against corrosion in harsh environments.</div></div><div><h3>Methods</h3><div>Layered double hydroxide (LDH) modified with choline benzoate ionic liquid is successfully fabricated through coprecipitation and ion-exchange strategies, and then incorporated into an epoxy to generate the CB-LDH/EP composite coating. The anti-corrosive and self-healing abilities of the CB-LDH/EP are comprehensively evaluated.</div></div><div><h3>Significant findings</h3><div>The addition of CB-LDH active nanocontainer induces a clear increase in the polarization resistance of the coatings (from 9.36 × 10<sup>6</sup> to 4.35 × 10<sup>8</sup> Ω cm<sup>2</sup>). Moreover, the localized corrosion of the coating surface can be considerably retarded according to the long-term immersion experiments. Such an obvious enhancement in the corrosion resistance is attributed to the synergistic mechanism between the components of the polymer coating. The inherent lamellar structures of LDH enhance the physical barrier effect of the coating. Benefiting from the outstanding ion-exchange behavior, the LDH can serve as a storage station for corrosive anions like chloridion, and simultaneously the released benzoate anions from LDH galleries play a role of active corrosion protection. In addition, the choline cations can be adsorbed to the LDH surface because of their polar groups, indicative of a further improvement in the anti-corrosive performance of the coating.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"172 ","pages":"Article 106140"},"PeriodicalIF":5.5,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143823238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the Taiwan Institute of Chemical Engineers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1