A Model Personalization-based Federated Learning Approach for Heterogeneous Participants with Variability in the Dataset

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Sensor Networks Pub Date : 2023-11-06 DOI:10.1145/3629978
Rahul Mishra, Hari Prabhat Gupta
{"title":"A Model Personalization-based Federated Learning Approach for Heterogeneous Participants with Variability in the Dataset","authors":"Rahul Mishra, Hari Prabhat Gupta","doi":"10.1145/3629978","DOIUrl":null,"url":null,"abstract":"Federated learning is an emerging paradigm that provides privacy-preserving collaboration among multiple participants for model training without sharing private data. The participants with heterogeneous devices and networking resources decelerate the training and aggregation. The dataset of the participant also possesses a high level of variability, which means the characteristics of the dataset change over time. Moreover, it is a prerequisite to preserve the personalized characteristics of the local dataset on each participant device to achieve better performance. This paper proposes a model personalization-based federated learning approach in the presence of variability in the local datasets. The approach involves participants with heterogeneous devices and networking resources. The central server initiates the approach and constructs a base model that executes on most participants. The approach simultaneously learns the personalized model and handles the variability in the datasets. We propose a knowledge distillation-based early-halting approach for devices where the base model does not fit directly. The early halting speeds up the training of the model. We also propose an aperiodic global update approach that helps participants to share their updated parameters aperiodically with server. Finally, we perform a real-world study to evaluate the performance of the approach and compare with state-of-the-art techniques.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"24 2","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3629978","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning is an emerging paradigm that provides privacy-preserving collaboration among multiple participants for model training without sharing private data. The participants with heterogeneous devices and networking resources decelerate the training and aggregation. The dataset of the participant also possesses a high level of variability, which means the characteristics of the dataset change over time. Moreover, it is a prerequisite to preserve the personalized characteristics of the local dataset on each participant device to achieve better performance. This paper proposes a model personalization-based federated learning approach in the presence of variability in the local datasets. The approach involves participants with heterogeneous devices and networking resources. The central server initiates the approach and constructs a base model that executes on most participants. The approach simultaneously learns the personalized model and handles the variability in the datasets. We propose a knowledge distillation-based early-halting approach for devices where the base model does not fit directly. The early halting speeds up the training of the model. We also propose an aperiodic global update approach that helps participants to share their updated parameters aperiodically with server. Finally, we perform a real-world study to evaluate the performance of the approach and compare with state-of-the-art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型个性化的数据集可变性异构参与者联邦学习方法
联邦学习是一种新兴的范例,它在不共享私有数据的情况下为模型训练的多个参与者提供保护隐私的协作。参与者的设备和网络资源异构,降低了训练和聚合的速度。参与者的数据集还具有高度的可变性,这意味着数据集的特征会随着时间的推移而变化。此外,在每个参与设备上保持本地数据集的个性化特征是实现更好性能的先决条件。本文提出了一种基于模型个性化的局部数据集中存在可变性的联邦学习方法。该方法涉及具有异构设备和网络资源的参与者。中央服务器启动该方法并构造一个在大多数参与者上执行的基本模型。该方法在学习个性化模型的同时处理数据集的可变性。我们提出了一种基于知识蒸馏的早期停止方法,用于基本模型不直接拟合的设备。早期停止加速了模型的训练。我们还提出了一种非周期性全局更新方法,帮助参与者不定期地与服务器共享其更新的参数。最后,我们进行了现实世界的研究,以评估该方法的性能,并与最先进的技术进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks 工程技术-电信学
CiteScore
5.90
自引率
7.30%
发文量
131
审稿时长
6 months
期刊介绍: ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.
期刊最新文献
Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain PnA: Robust Aggregation Against Poisoning Attacks to Federated Learning for Edge Intelligence HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization HDM-GNN: A Heterogeneous Dynamic Multi-view Graph Neural Network for Crime Prediction A DRL-based Partial Charging Algorithm for Wireless Rechargeable Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1