Exploring ASEAN Fly Ash for Enhancing Cement Hydration and Service Life Prediction of Portland Cement Mortar

Thwe Thwe Win, Rungrawee Wattanapornprom, Lapyote Prasittisopin, Withit Pansuk, Phoonsak Pheinsusom
{"title":"Exploring ASEAN Fly Ash for Enhancing Cement Hydration and Service Life Prediction of Portland Cement Mortar","authors":"Thwe Thwe Win, Rungrawee Wattanapornprom, Lapyote Prasittisopin, Withit Pansuk, Phoonsak Pheinsusom","doi":"10.4186/ej.2023.27.9.1","DOIUrl":null,"url":null,"abstract":". The durability of cementitious materials can be improved with the widespread utilization of fly ash (FA). Although FA has been available for use in cement and concrete industries for decades, there is still a practical barrier associated with its application. The difficulty stems from its wide variety and heterogeneity. The purpose of this research is to conduct both experimental and numerical investigations to achieve a better understanding of managing the variation of FA, which reflects its durability. The chemical properties and particle size distribution of FA from five distinct sources in ASEAN region were analyzed. In addition, the degree of reactivity, flow, toughened porosity, and apparent chloride diffusivity coefficients of blended FA-cement systems were studied (D a ). The Life365 service life model was executed. Using analysis of variance (ANOVA) and sensitivity analysis using linear regression, the experimental outcomes were statistically examined. Having a 15% FA replacement level resulted in a roughly 70% decrease of the D a value, extending its serviceability by around 13%. The chemo-physical processes in multi-scale structures were shown to be the most important element by statistical analysis, and the degree of response in blended FA-cement systems and its toughened porosity were found to be among the most beneficial aspects affecting its durability.","PeriodicalId":11618,"journal":{"name":"Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4186/ej.2023.27.9.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. The durability of cementitious materials can be improved with the widespread utilization of fly ash (FA). Although FA has been available for use in cement and concrete industries for decades, there is still a practical barrier associated with its application. The difficulty stems from its wide variety and heterogeneity. The purpose of this research is to conduct both experimental and numerical investigations to achieve a better understanding of managing the variation of FA, which reflects its durability. The chemical properties and particle size distribution of FA from five distinct sources in ASEAN region were analyzed. In addition, the degree of reactivity, flow, toughened porosity, and apparent chloride diffusivity coefficients of blended FA-cement systems were studied (D a ). The Life365 service life model was executed. Using analysis of variance (ANOVA) and sensitivity analysis using linear regression, the experimental outcomes were statistically examined. Having a 15% FA replacement level resulted in a roughly 70% decrease of the D a value, extending its serviceability by around 13%. The chemo-physical processes in multi-scale structures were shown to be the most important element by statistical analysis, and the degree of response in blended FA-cement systems and its toughened porosity were found to be among the most beneficial aspects affecting its durability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
东盟粉煤灰增强水泥水化性能及硅酸盐水泥砂浆寿命预测研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensile Coupon Testing and Residual Stress Measurements of High-Strength Steel Built-Up I-Shaped Sections Lateral-Torsional Buckling Modification Factors in Steel I-Shaped Members: Recommendations Using Energy-Based Formulations Torsional Design of Round HSS Members— A Critical Review The Adoption of AISC 360 for Offshore Structural Design Practices Steel Structures Research Update: Innovative Steel Deck System for Highway Bridge Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1