{"title":"Thermal performance of cavities in 3DPC building façades","authors":"M Moelich, G van Zijl, W de Villiers","doi":"10.17159/2309-8775/2023/v65n3a4","DOIUrl":null,"url":null,"abstract":"In the quest for sufficient and comfortable housing in South Africa, attention to building orientation and thermal transmittance principles has significantly improved thermal performance in local houses. Thermal simulation and monitoring of houses in the Joe Slovo Phase Three development in Cape Town confirms improved performance by solar radiation blockage and shading. This paper simulates the thermal performance of a housing unit in this development. The house was instrumented with thermocouples, and monitored from March to December 2013 by Sustainable Energy Africa in collaboration with the National Department of Human Settlements. Sustainable Energy Africa reported significant improvement when compared to a nearby traditional Reconstruction and Development Programme house that had been monitored during the same period. With the benefit of the monitored thermal data, complete drawings, and specification details of the Joe Slovo Phase Three unit, the current research modelled and calibrated a simulation model in DesignBuilder. DesignBuilder was selected given its accreditation status for Green Star Rating of buildings in South Africa. An additional motivation for investigating this unit was the availability of recorded weather data from the nearby Cape Town International Airport, captured in the DesignBuilder climate data base for 2013, which was assumed relevant in lieu of complete weather station data measured at the location of the housing unit. The study aimed to simulate the monitored temperatures in the house with acceptable agreement, and to investigate further potential improvement in occupant thermal comfort by alternative 3D-printed concrete walling developed by the authors. Systematic finite element analysis (FEA) iteratively solved cavity radiation and convection in wall cavities to calibrate thermal transmittance parameters for DesignBuilder. The FEA results acceptably simulated temperatures monitored in this physical wall experiment. The calibrated DesignBuilder model simulated the indoor temperatures of the monitored house with acceptable agreement, and predicted significant improvement in occupant thermal comfort if the walls were 3D-printed with a particular cross-sectional design.","PeriodicalId":54762,"journal":{"name":"Journal of the South African Institution of Civil Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the South African Institution of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/2309-8775/2023/v65n3a4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In the quest for sufficient and comfortable housing in South Africa, attention to building orientation and thermal transmittance principles has significantly improved thermal performance in local houses. Thermal simulation and monitoring of houses in the Joe Slovo Phase Three development in Cape Town confirms improved performance by solar radiation blockage and shading. This paper simulates the thermal performance of a housing unit in this development. The house was instrumented with thermocouples, and monitored from March to December 2013 by Sustainable Energy Africa in collaboration with the National Department of Human Settlements. Sustainable Energy Africa reported significant improvement when compared to a nearby traditional Reconstruction and Development Programme house that had been monitored during the same period. With the benefit of the monitored thermal data, complete drawings, and specification details of the Joe Slovo Phase Three unit, the current research modelled and calibrated a simulation model in DesignBuilder. DesignBuilder was selected given its accreditation status for Green Star Rating of buildings in South Africa. An additional motivation for investigating this unit was the availability of recorded weather data from the nearby Cape Town International Airport, captured in the DesignBuilder climate data base for 2013, which was assumed relevant in lieu of complete weather station data measured at the location of the housing unit. The study aimed to simulate the monitored temperatures in the house with acceptable agreement, and to investigate further potential improvement in occupant thermal comfort by alternative 3D-printed concrete walling developed by the authors. Systematic finite element analysis (FEA) iteratively solved cavity radiation and convection in wall cavities to calibrate thermal transmittance parameters for DesignBuilder. The FEA results acceptably simulated temperatures monitored in this physical wall experiment. The calibrated DesignBuilder model simulated the indoor temperatures of the monitored house with acceptable agreement, and predicted significant improvement in occupant thermal comfort if the walls were 3D-printed with a particular cross-sectional design.
期刊介绍:
The Journal of the South African Institution of Civil Engineering publishes peer reviewed papers on all aspects of Civil Engineering relevant to Africa. It is an open access, ISI accredited journal, providing authoritative information not only on current developments, but also – through its back issues – giving access to data on established practices and the construction of existing infrastructure. It is published quarterly and is controlled by a Journal Editorial Panel.
The forerunner of the South African Institution of Civil Engineering was established in 1903 as a learned society aiming to develop technology and to share knowledge for the development of the day. The minutes of the proceedings of the then Cape Society of Civil Engineers mainly contained technical papers presented at the Society''s meetings. Since then, and throughout its long history, during which time it has undergone several name changes, the organisation has continued to publish technical papers in its monthly publication (magazine), until 1993 when it created a separate journal for the publication of technical papers.