Arindam Chakraborty, Kalash Darshan Sahare, Santanu Majumder, Amit Roy Chowdhury
{"title":"Understanding the biomechanical response of progressive thread dental implants using multi-scale finite element analysis","authors":"Arindam Chakraborty, Kalash Darshan Sahare, Santanu Majumder, Amit Roy Chowdhury","doi":"10.1615/intjmultcompeng.2023049024","DOIUrl":null,"url":null,"abstract":"Implant osseointegration is an important factor dictating its long-term efficacy, in situ. Along with various biological factors, it is greatly influenced by the mechanical stimulus at the peri-implant bone. This study aims to understand the biomechanical response of progressive thread dental implants using multi-scale-based finite element analysis employing macro and micro models of bone. µ-CT images of a cadaveric human mandible of its premolar region were obtained along with CT scan of the same region to generate computational models. Total six dental implants were designed having regular and progressive thread depths. Three different stages of healing of the bone-implant assembly were simulated parametrically. The biomechanical environment at the peri-implant bone was analysed considering the ‘Mechanostat’ hypothesis. The obtained results revealed that bone strain is significantly higher during the initial healing phase when the bone is weakest. During this phase, implant stress and its displacement in both buccolingual and coronoapical directions are also noticeably higher. Also, displacements of progressive thread implants were lower in all the healing phases compare to the implants with constant thread depth. The observations of this µFEA study highlight the clinical applicability of a progressive thread dental implant as it generates larger functional surface area thus engaging higher trabeculae and therefore suitable for weaker bone conditions. Furthermore, by comparing the stress values at bone and implant between the two bone models, the CT-based model having inhomogeneous material was deemed suitable as an alternative to computationally expensive µFEA.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2023049024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Implant osseointegration is an important factor dictating its long-term efficacy, in situ. Along with various biological factors, it is greatly influenced by the mechanical stimulus at the peri-implant bone. This study aims to understand the biomechanical response of progressive thread dental implants using multi-scale-based finite element analysis employing macro and micro models of bone. µ-CT images of a cadaveric human mandible of its premolar region were obtained along with CT scan of the same region to generate computational models. Total six dental implants were designed having regular and progressive thread depths. Three different stages of healing of the bone-implant assembly were simulated parametrically. The biomechanical environment at the peri-implant bone was analysed considering the ‘Mechanostat’ hypothesis. The obtained results revealed that bone strain is significantly higher during the initial healing phase when the bone is weakest. During this phase, implant stress and its displacement in both buccolingual and coronoapical directions are also noticeably higher. Also, displacements of progressive thread implants were lower in all the healing phases compare to the implants with constant thread depth. The observations of this µFEA study highlight the clinical applicability of a progressive thread dental implant as it generates larger functional surface area thus engaging higher trabeculae and therefore suitable for weaker bone conditions. Furthermore, by comparing the stress values at bone and implant between the two bone models, the CT-based model having inhomogeneous material was deemed suitable as an alternative to computationally expensive µFEA.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.