Multiscale 3D TransUNet-aided Tumor Segmentation and Multi-Cascaded Model for Lung Cancer Diagnosis System from 3D CT Images with Fused Feature Pool Formation
GILBERT langat, Beiji Zou, Xiaoyan Kui, Kevin Njagi
{"title":"Multiscale 3D TransUNet-aided Tumor Segmentation and Multi-Cascaded Model for Lung Cancer Diagnosis System from 3D CT Images with Fused Feature Pool Formation","authors":"GILBERT langat, Beiji Zou, Xiaoyan Kui, Kevin Njagi","doi":"10.1615/intjmultcompeng.2024052181","DOIUrl":null,"url":null,"abstract":"A deadly disease that affects people in various countries in the world is Lung Cancer (LC). The rate at which people die due to LC is high because it cannot be detected easily at its initial stage of tumor development. The lives of many people who are affected by LC are assured if it is detected in the initial stage. The diagnosis of LC is possible with conventional Computer-Aided Diagnosis (CAD). The process of diagnosis can be improved by providing the associated evaluation outcomes to the radiologists. Since the results from the process of extraction of features and segmentation of lung nodule are crucial in determining the operation of the traditional CAD system, the results from the CAD system highly depends on these processes. The LC classification from Computed Tomography (CT) images of three dimensions (3D) using a CAD system is the key aspect of this paper. The collection of the 3D-CT images from the standard data source takes place in the first stage. The obtained images are provided as input for the segmentation stage, in which a Multi-scale 3D TransUNet (M-3D-TUNet) is adopted to get the precise segmentation of the LC images. A multi-cascaded model that incorporates Residual Network (ResNet), Visual Geometry Group (VGG)-19, and DenseNet models is utilized to obtain the deep features from the segmented images. The segmented image from the M-3D-TUNet model is given as input to this multi-cascaded network. The features are obtained and fused to form the feature pool. The feature pool features are provided to the Enhanced Long Short Term Memory with Attention Mechanism (ELSTM-AM) for classification of the LC. The ELSTM-AM classifies the images as normal or healthy","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":"12 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Multiscale Computational Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2024052181","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A deadly disease that affects people in various countries in the world is Lung Cancer (LC). The rate at which people die due to LC is high because it cannot be detected easily at its initial stage of tumor development. The lives of many people who are affected by LC are assured if it is detected in the initial stage. The diagnosis of LC is possible with conventional Computer-Aided Diagnosis (CAD). The process of diagnosis can be improved by providing the associated evaluation outcomes to the radiologists. Since the results from the process of extraction of features and segmentation of lung nodule are crucial in determining the operation of the traditional CAD system, the results from the CAD system highly depends on these processes. The LC classification from Computed Tomography (CT) images of three dimensions (3D) using a CAD system is the key aspect of this paper. The collection of the 3D-CT images from the standard data source takes place in the first stage. The obtained images are provided as input for the segmentation stage, in which a Multi-scale 3D TransUNet (M-3D-TUNet) is adopted to get the precise segmentation of the LC images. A multi-cascaded model that incorporates Residual Network (ResNet), Visual Geometry Group (VGG)-19, and DenseNet models is utilized to obtain the deep features from the segmented images. The segmented image from the M-3D-TUNet model is given as input to this multi-cascaded network. The features are obtained and fused to form the feature pool. The feature pool features are provided to the Enhanced Long Short Term Memory with Attention Mechanism (ELSTM-AM) for classification of the LC. The ELSTM-AM classifies the images as normal or healthy
期刊介绍:
The aim of the journal is to advance the research and practice in diverse areas of Multiscale Computational Science and Engineering. The journal will publish original papers and educational articles of general value to the field that will bridge the gap between modeling, simulation and design of products based on multiscale principles. The scope of the journal includes papers concerned with bridging of physical scales, ranging from the atomic level to full scale products and problems involving multiple physical processes interacting at multiple spatial and temporal scales. The emerging areas of computational nanotechnology and computational biotechnology and computational energy sciences are of particular interest to the journal. The journal is intended to be of interest and use to researchers and practitioners in academic, governmental and industrial communities.