Xingbang Wan, Dmitry Sukhomlinov, Pekka Taskinen, Mari Lindgren, Radoslaw Michallik, Ari Jokilaakso
{"title":"Arsenic Condensation and Reaction Mechanisms in Flash Smelting Off-Gas Line Conditions","authors":"Xingbang Wan, Dmitry Sukhomlinov, Pekka Taskinen, Mari Lindgren, Radoslaw Michallik, Ari Jokilaakso","doi":"10.1007/s11663-023-02871-9","DOIUrl":null,"url":null,"abstract":"Abstract Arsenic is a common impurity element in sulfide concentrates. It tends to accumulate in the flue dust of smelting furnace due to the volatility and internal circulation of the flue dust practiced in the smelting-converting process chain. The only outlets for arsenic are anodes and discard slag. Arsenic condensation in dust-free conditions was studied below 800 °C where the gas atmosphere was controlled by SO 2 -air-N 2 gas mixtures. Based on these experimental results, we confirm the kinetically constrained formation mechanism of the arsenic-containing dust, and its speciation into metallic, oxidic (III, V), and sulfidic species. The influences of temperature and atmosphere on the speciation of arsenic were compared with industrial data and discussed. Graphical Abstract Condensed arsenic‐bearing particles collected by electrophoretic forces on the surface of fused SiO 2 in SO 2 ‐O 2 atmospheres: the crystal morphology shows euhedrally facetted As 2 O 3 crystals and initially molten As‐OS alloy droplets together with poorly crystallized AsS x particles.","PeriodicalId":51126,"journal":{"name":"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science","volume":"239 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-023-02871-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Arsenic is a common impurity element in sulfide concentrates. It tends to accumulate in the flue dust of smelting furnace due to the volatility and internal circulation of the flue dust practiced in the smelting-converting process chain. The only outlets for arsenic are anodes and discard slag. Arsenic condensation in dust-free conditions was studied below 800 °C where the gas atmosphere was controlled by SO 2 -air-N 2 gas mixtures. Based on these experimental results, we confirm the kinetically constrained formation mechanism of the arsenic-containing dust, and its speciation into metallic, oxidic (III, V), and sulfidic species. The influences of temperature and atmosphere on the speciation of arsenic were compared with industrial data and discussed. Graphical Abstract Condensed arsenic‐bearing particles collected by electrophoretic forces on the surface of fused SiO 2 in SO 2 ‐O 2 atmospheres: the crystal morphology shows euhedrally facetted As 2 O 3 crystals and initially molten As‐OS alloy droplets together with poorly crystallized AsS x particles.
期刊介绍:
Focused on process metallurgy and materials processing science, Metallurgical and Materials Transactions B contains only original, critically reviewed research on primary manufacturing processes, from extractive metallurgy to the making of a shape.
A joint publication of ASM International and TMS (The Minerals, Metals and Materials Society), Metallurgical and Materials Transactions B publishes contributions bimonthly on the theoretical and engineering aspects of the processing of metals and other materials, including studies of electro- and physical chemistry, mass transport, modeling and related computer applications.
Articles cover extractive and process metallurgy, pyrometallurgy, hydrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, composite materials, materials processing and the environment.