State estimation of memristor-based stochastic neural networks with mixed variable delays

IF 0.9 4区 数学 Q2 MATHEMATICS Miskolc Mathematical Notes Pub Date : 2023-01-01 DOI:10.18514/mmn.2023.4028
Ramasamy Saravanakumar, Hemen Dutta
{"title":"State estimation of memristor-based stochastic neural networks with mixed variable delays","authors":"Ramasamy Saravanakumar, Hemen Dutta","doi":"10.18514/mmn.2023.4028","DOIUrl":null,"url":null,"abstract":". This paper studies the state estimation problem for memristor-based stochastic neural networks (MSNNs) with mixed variable delays. A new Lyapunov-Krasovskii functional (LKF) with quadruple integral terms is incorporated. Then, asymptotic stability conditions are established for the error system using a linear matrix inequality technique. The estimator gain can be obtained by solving the linear matrix inequalities. Numerical simulations are given to demonstrate the effectiveness and superiority of the new scheme.","PeriodicalId":51252,"journal":{"name":"Miskolc Mathematical Notes","volume":"1 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. This paper studies the state estimation problem for memristor-based stochastic neural networks (MSNNs) with mixed variable delays. A new Lyapunov-Krasovskii functional (LKF) with quadruple integral terms is incorporated. Then, asymptotic stability conditions are established for the error system using a linear matrix inequality technique. The estimator gain can be obtained by solving the linear matrix inequalities. Numerical simulations are given to demonstrate the effectiveness and superiority of the new scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合变延迟记忆器随机神经网络的状态估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
期刊最新文献
Applications of Horadam polynomials on a new family of bi-prestarlike functions On traces of permuting n-derivations on prime ideals State estimation of memristor-based stochastic neural networks with mixed variable delays Tauberian theorems for Nörlund-Cesáro mean via statistically convergence in m-Normed spaces New generalizations of some important inequalities for Sarikaya fractional integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1