Optimizing Detection in MIMO OFDM Radar: Methods for Eliminating Distance-angle Coupling in Beamforming

IF 0.7 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Progress in Electromagnetics Research M Pub Date : 2023-01-01 DOI:10.2528/pierm23080103
Doudou Huang, Yurong Wu, Mingliang Shen, Longshan Xu, Jun Tang
{"title":"Optimizing Detection in MIMO OFDM Radar: Methods for Eliminating Distance-angle Coupling in Beamforming","authors":"Doudou Huang, Yurong Wu, Mingliang Shen, Longshan Xu, Jun Tang","doi":"10.2528/pierm23080103","DOIUrl":null,"url":null,"abstract":": This study investigates beamforming and optimization in Multiple-Input-Multiple-Output Orthogonal-Frequency-Division-Multiplexing (MIMO OFDM) radar systems. The objective of this research is to mitigate the range-angle coupling effect in MIMO OFDM radarsystems byadopting range compensationand distance-angle decouplingmethods, whichis to ensurethat the signalprocessing during radar waveform formation does not impact the aforementioned coupling effect. In distance compensation, the CVX toolbox is used to minimize peak sidelobe. A mathematical model is established, and an optimal set of transmission frequencies is achieved through the use of the Alternating-Direction-Method-of-Multipliers (ADMM) algorithm in the context of distance-angle decoupling. Both methods effectively eliminate distance-angle coupling and enhance detection and identification capabilities of MIMO OFDM radar systems.","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research M","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pierm23080103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

: This study investigates beamforming and optimization in Multiple-Input-Multiple-Output Orthogonal-Frequency-Division-Multiplexing (MIMO OFDM) radar systems. The objective of this research is to mitigate the range-angle coupling effect in MIMO OFDM radarsystems byadopting range compensationand distance-angle decouplingmethods, whichis to ensurethat the signalprocessing during radar waveform formation does not impact the aforementioned coupling effect. In distance compensation, the CVX toolbox is used to minimize peak sidelobe. A mathematical model is established, and an optimal set of transmission frequencies is achieved through the use of the Alternating-Direction-Method-of-Multipliers (ADMM) algorithm in the context of distance-angle decoupling. Both methods effectively eliminate distance-angle coupling and enhance detection and identification capabilities of MIMO OFDM radar systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIMO OFDM雷达的优化检测:波束形成中消除距离角耦合的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Electromagnetics Research M
Progress in Electromagnetics Research M Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.50
自引率
10.00%
发文量
114
期刊介绍: Progress In Electromagnetics Research (PIER) M publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. Especially, PIER M publishes papers on method of electromagnetics, and other topics on electromagnetic theory. It is an open access, on-line journal in 2008, and freely accessible to all readers via the Internet. Manuscripts submitted to PIER M must not have been submitted simultaneously to other journals.
期刊最新文献
Wearable Dual-band Frequency Reconfigurable Patch Antenna for WBAN Applications Design and Optimization of 2D Photonic Crystal Based Compact All Optical T Splitter for Photonic Integrated Circuits Multi-objective Optimal Design of Single-phase Line-starting Permanent Magnet Synchronous Motor Based on Response Surface Method Measurement and Prediction of Signal Strength of Wireless Sensor Network Lateral Flow Immunoassay Strip Based on Confocal Raman Imaging for Ultrasensitive and Rapid Detection of COVID-19 and Bacterial Biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1