Development of polymeric IPN hydrogels by free radical polymerization technique for extended release of letrozole: Characterization and toxicity evaluation
Hammad Yousaf, Ikrima Khalid, Kashif Barkat, Yasir Mehmood, Syed Faisal Badshah, Irfan Anjum, Hiba-Allah Nafidi, Yousef A. Bin Jardan, Mohammed Bourhia
{"title":"Development of polymeric IPN hydrogels by free radical polymerization technique for extended release of letrozole: Characterization and toxicity evaluation","authors":"Hammad Yousaf, Ikrima Khalid, Kashif Barkat, Yasir Mehmood, Syed Faisal Badshah, Irfan Anjum, Hiba-Allah Nafidi, Yousef A. Bin Jardan, Mohammed Bourhia","doi":"10.1515/epoly-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract This research study’s objective was to formulate interpenetrating pH-sensitive polymeric networks interpenetrating networks (IPNs) based on hydroxypropylmethylcellulose (HPMC)/Primojel for use in the treatment of various malignant conditions. For controlled release, letrozole (LTZ) was selected as a model drug in HPMC and Primojel-based IPN hydrogels. HPMC and Primojel based IPN hydrogels were fabricated through the free radical polymerization method by utilizing HPMC and Primojel as polymers, methacrylic acid as monomer, ammonium persulfate as initiator, and methylenebisacrylamide as cross-linker. For structural characterization, various techniques such as Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), DSC, TGA, and Powder x-ray diffraction (PXRD) were applied to IPN samples. In vitro and swelling studies were also employed to observe the response of these polymeric networks against 1.2 and 7.4 pH. TGA and DSC of an optimized loaded formulation possess better thermal stability as compared to individual drug. PXRD depicted minor crystallinity and a significant amorphous nature. SEM images show that polymeric networks possess an uneven and porous surface. Significant swelling and enhanced in-vitro outcomes at a high pH of 7.4 confirmed the IPN pH responsive properties. Toxicological studies performed on rabbits revealed no harm in the results. Thus, IPN based on HPMC/Primojel was successfully synthesized and can be used for LTZ’s controlled release.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"34 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0033","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This research study’s objective was to formulate interpenetrating pH-sensitive polymeric networks interpenetrating networks (IPNs) based on hydroxypropylmethylcellulose (HPMC)/Primojel for use in the treatment of various malignant conditions. For controlled release, letrozole (LTZ) was selected as a model drug in HPMC and Primojel-based IPN hydrogels. HPMC and Primojel based IPN hydrogels were fabricated through the free radical polymerization method by utilizing HPMC and Primojel as polymers, methacrylic acid as monomer, ammonium persulfate as initiator, and methylenebisacrylamide as cross-linker. For structural characterization, various techniques such as Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), DSC, TGA, and Powder x-ray diffraction (PXRD) were applied to IPN samples. In vitro and swelling studies were also employed to observe the response of these polymeric networks against 1.2 and 7.4 pH. TGA and DSC of an optimized loaded formulation possess better thermal stability as compared to individual drug. PXRD depicted minor crystallinity and a significant amorphous nature. SEM images show that polymeric networks possess an uneven and porous surface. Significant swelling and enhanced in-vitro outcomes at a high pH of 7.4 confirmed the IPN pH responsive properties. Toxicological studies performed on rabbits revealed no harm in the results. Thus, IPN based on HPMC/Primojel was successfully synthesized and can be used for LTZ’s controlled release.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.