Convergence Analysis of Deep Residual Networks

IF 2 2区 数学 Q1 MATHEMATICS Analysis and Applications Pub Date : 2023-10-19 DOI:10.1142/s021953052350029x
Wentao Huang, Haizhang Zhang
{"title":"Convergence Analysis of Deep Residual Networks","authors":"Wentao Huang, Haizhang Zhang","doi":"10.1142/s021953052350029x","DOIUrl":null,"url":null,"abstract":"Various powerful deep neural network architectures have made great contributions to the exciting successes of deep learning in the past two decades. Among them, deep Residual Networks (ResNets) are of particular importance because they demonstrated great usefulness in computer vision by winning the first place in many deep learning competitions. Also, ResNets are the first class of neural networks in the development history of deep learning that are really deep. It is of mathematical interest and practical meaning to understand the convergence of deep ResNets. We aim at studying the convergence of deep ResNets as the depth tends to infinity in terms of the parameters of the networks. Toward this purpose, we first give a matrix–vector description of general deep neural networks with shortcut connections and formulate an explicit expression for the networks by using the notion of activation matrices. The convergence is then reduced to the convergence of two series involving infinite products of non-square matrices. By studying the two series, we establish a sufficient condition for pointwise convergence of ResNets. We also conduct experiments on benchmark machine learning data to illustrate the potential usefulness of the results.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":"51 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021953052350029x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Various powerful deep neural network architectures have made great contributions to the exciting successes of deep learning in the past two decades. Among them, deep Residual Networks (ResNets) are of particular importance because they demonstrated great usefulness in computer vision by winning the first place in many deep learning competitions. Also, ResNets are the first class of neural networks in the development history of deep learning that are really deep. It is of mathematical interest and practical meaning to understand the convergence of deep ResNets. We aim at studying the convergence of deep ResNets as the depth tends to infinity in terms of the parameters of the networks. Toward this purpose, we first give a matrix–vector description of general deep neural networks with shortcut connections and formulate an explicit expression for the networks by using the notion of activation matrices. The convergence is then reduced to the convergence of two series involving infinite products of non-square matrices. By studying the two series, we establish a sufficient condition for pointwise convergence of ResNets. We also conduct experiments on benchmark machine learning data to illustrate the potential usefulness of the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度残差网络的收敛分析
在过去的二十年里,各种强大的深度神经网络架构为深度学习的成功做出了巨大的贡献。其中,深度残差网络(ResNets)尤为重要,因为它们在许多深度学习竞赛中赢得了第一名,在计算机视觉中展示了巨大的实用性。此外,ResNets是深度学习发展史上第一类真正深度的神经网络。理解深度网络的收敛性具有重要的数学意义和实际意义。我们的目的是研究深度ResNets在网络参数趋于无穷大时的收敛性。为此,我们首先给出了具有快捷连接的一般深度神经网络的矩阵-向量描述,并利用激活矩阵的概念给出了网络的显式表达式。然后将收敛性简化为涉及非方阵无穷积的两个级数的收敛性。通过对这两个级数的研究,我们建立了ResNets点向收敛的充分条件。我们还对基准机器学习数据进行了实验,以说明结果的潜在有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
期刊最新文献
On the strong solution for a diffuse interface model of non-Newtonian two-phase flows Distributed SGD in Overparameterized Linear Regression Interpolatory Taylor and Lidstone series Author index Volume 21 (2023) Convergence Analysis of Deep Residual Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1