Tertiary treatment using ultrafiltration in an existing sewage treatment plant for industrial reuse – a modelling approach using an artificial neural network with uncertainty estimation

IF 4.3 4区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL Water Reuse Pub Date : 2023-10-19 DOI:10.2166/wrd.2023.179
D. Ramkumar, Vinayakam Jothiprakash
{"title":"Tertiary treatment using ultrafiltration in an existing sewage treatment plant for industrial reuse – a modelling approach using an artificial neural network with uncertainty estimation","authors":"D. Ramkumar, Vinayakam Jothiprakash","doi":"10.2166/wrd.2023.179","DOIUrl":null,"url":null,"abstract":"Abstract Navi Mumbai Municipal Corporation of Maharashtra state, India, unified a tertiary treatment plant (TTP) of 20 million litres per day (MLD) capacity with ultrafiltration technology in an existing Koparkhairane sewage treatment plant (STP) for producing effluent quality usable for industrial purposes. As prior art, an artificial neural network-genetic algorithm (ANN-GA) along with uncertainty estimation using prediction interval is employed to model secondary treated effluent (STE) flow rate (QT) and other quality parameters such as biochemical oxygen demand, chemical oxygen demand, and total suspended solids (TSS) to conclude the reliability of the range in which the input available to TTP. ANN-GA model provides a coefficient of determination above 0.90 for all STE parameters modelled other than TSS. Inferring that a good quantity and quality of 20 MLD STP treated water is currently available, where a decreasing trend of QT is also noticed and highlighted. Further, the Wilcoxon signed-rank test on the quality parameter of effluent TTP for industrial reuse standard infers TSS shows infringement during the initial period but started adhering to standards over time. The research delineates at the outset of exploring water reuse policy in India, emphasizing Maharashtra state, modelling STE using ANN-GA and performance evaluation of TTP.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":"1 1","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Reuse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2023.179","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Navi Mumbai Municipal Corporation of Maharashtra state, India, unified a tertiary treatment plant (TTP) of 20 million litres per day (MLD) capacity with ultrafiltration technology in an existing Koparkhairane sewage treatment plant (STP) for producing effluent quality usable for industrial purposes. As prior art, an artificial neural network-genetic algorithm (ANN-GA) along with uncertainty estimation using prediction interval is employed to model secondary treated effluent (STE) flow rate (QT) and other quality parameters such as biochemical oxygen demand, chemical oxygen demand, and total suspended solids (TSS) to conclude the reliability of the range in which the input available to TTP. ANN-GA model provides a coefficient of determination above 0.90 for all STE parameters modelled other than TSS. Inferring that a good quantity and quality of 20 MLD STP treated water is currently available, where a decreasing trend of QT is also noticed and highlighted. Further, the Wilcoxon signed-rank test on the quality parameter of effluent TTP for industrial reuse standard infers TSS shows infringement during the initial period but started adhering to standards over time. The research delineates at the outset of exploring water reuse policy in India, emphasizing Maharashtra state, modelling STE using ANN-GA and performance evaluation of TTP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在现有的工业回用污水处理厂使用超滤进行三级处理-一种使用不确定性估计的人工神经网络建模方法
印度马哈拉施特拉邦的新孟买市政公司在现有的Koparkhairane污水处理厂(STP)中统一了一个每天2000万升(MLD)能力的三级处理厂(TTP),用于生产可用于工业目的的污水。作为现有技术,采用人工神经网络遗传算法(ANN-GA)以及使用预测区间的不确定性估计对二级处理出水(STE)流量(QT)和其他质量参数(如生化需氧量、化学需氧量和总悬浮固体(TSS))进行建模,以得出TTP可用输入范围的可靠性。ANN-GA模型除TSS外,所有STE参数的确定系数均在0.90以上。推断目前有20个MLD STP处理水的数量和质量都很好,其中QT也有下降的趋势。进一步,对工业回用标准出水TTP的质量参数进行Wilcoxon sign -rank检验,得出TSS在初始阶段表现为侵权,但随着时间的推移开始遵守标准。该研究首先描述了探索印度的水再利用政策,重点是马哈拉施特拉邦,使用ANN-GA建模STE和TTP的绩效评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Reuse
Water Reuse Multiple-
CiteScore
6.20
自引率
8.90%
发文量
0
审稿时长
7 weeks
期刊最新文献
Removal of Tellurium(IV) from environmental aquatic systems using metal-organic framework material MIL-100(Fe) Effectiveness and health risk assessment of drinking water from different sources treated by local household water treatment methods in Bamenda, Cameroon Adsorption efficiency of biochar produced by aquaculture by-products for removing geosmin in aquaculture environment Enhancing stormwater treatment through ultrafiltration: impact of cleaning chemicals and backwash duration on membrane efficiency cutting-edge research on the action plan for the prevention and control of emerging contaminants in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1