Causal Analysis Between Rice Growth and Cadmium Accumulation and Transfer under Arbuscular Mycorrhizal Inoculation

IF 5.6 2区 农林科学 Q1 AGRONOMY Rice Science Pub Date : 2024-03-01 DOI:10.1016/j.rsci.2023.10.004
Zhao Ting, Wang Li, Yang Jixian, Ma Fang
{"title":"Causal Analysis Between Rice Growth and Cadmium Accumulation and Transfer under Arbuscular Mycorrhizal Inoculation","authors":"Zhao Ting,&nbsp;Wang Li,&nbsp;Yang Jixian,&nbsp;Ma Fang","doi":"10.1016/j.rsci.2023.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium (Cd) contamination in rice has been a serious threat to human health. To investigate the effects of arbuscular mycorrhizal fungi (AMF) on the Cd translocation in rice, a controlled pot experiment was conducted. The results indicated that AMF significantly increased rice biomass, with an increase of up to 40.0%, particularly in root biomass by up to 68.4%. Notably, the number of prominent rice individuals also increased, and their plasticity was enhanced following AMF inoculation. AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice. In the AMF treatment group, the Cd concentration in the rice roots was significantly higher (19.1%‒68.0%) compared with that in the control group. Conversely, the Cd concentration in the rice seeds was lower in the AMF treatment group, indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds. Path coefficients varied across different treatments, suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds. The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects. Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"31 2","pages":"Pages 226-236"},"PeriodicalIF":5.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823001154/pdfft?md5=670f2c00671f226d4e7a6d63c6450d53&pid=1-s2.0-S1672630823001154-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630823001154","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium (Cd) contamination in rice has been a serious threat to human health. To investigate the effects of arbuscular mycorrhizal fungi (AMF) on the Cd translocation in rice, a controlled pot experiment was conducted. The results indicated that AMF significantly increased rice biomass, with an increase of up to 40.0%, particularly in root biomass by up to 68.4%. Notably, the number of prominent rice individuals also increased, and their plasticity was enhanced following AMF inoculation. AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice. In the AMF treatment group, the Cd concentration in the rice roots was significantly higher (19.1%‒68.0%) compared with that in the control group. Conversely, the Cd concentration in the rice seeds was lower in the AMF treatment group, indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds. Path coefficients varied across different treatments, suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds. The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects. Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丛枝菌根接种下水稻生长与镉积累和转移的成因分析
水稻中的镉(Cd)污染已严重威胁人类健康。为了研究丛枝菌根真菌(AMF)对水稻镉转移的影响,我们进行了盆栽对照实验。结果表明,AMF能明显增加水稻的生物量,增幅高达40.0%,尤其是根部生物量的增幅高达68.4%。值得注意的是,接种 AMF 后,水稻的突出个体数量也增加了,其可塑性也增强了。AMF 提高了水稻的净光合速率和抗氧化酶活性。与对照组相比,AMF处理组水稻根中的镉浓度明显升高(19.1%-68.0%)。相反,AMF 处理组水稻种子中的镉浓度较低,表明 AMF 促进了镉在水稻根部的吸收,减少了镉在种子中的积累。不同处理的路径系数不同,表明接种 AMF 可减少土壤中镉浓度对种子中总镉积累的直接影响。镉的转移始终与菌根效应导致的生长稀释和补偿积累同时发生。我们的研究通过路径分析定量分析了这一过程,并阐明了在 AMF 影响下水稻生长与镉转移之间的因果关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rice Science
Rice Science Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍: Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.
期刊最新文献
Appropriate Supply of Ammonium Nitrogen and Ammonium Nitrate Reduces Cadmium Content in Rice Seedlings by Inhibiting Cadmium Uptake and Transport Development of Machine Vision-Based Algorithm for Counting and Discriminating Filled and Unfilled Paddy Rice in Overlapping Mode Biochar Decreases Soil Cadmium (Cd) Availability and Regulates Expression Levels of Cd Uptake/Transport-Related Genes to Reduce Cd Translocation in Rice Next Generation Nutrition: Genomic and Molecular Breeding Innovations for Iron and Zinc Biofortification in Rice Ameliorative Effects of Paclobutrazol via Physio-Biochemical and Molecular Manifestation in Rice under Water Deficit Stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1