VARYASYONEL MOD AYRIŞTIRMASIYLA ÖKSÜRÜK SESLERİNDEN KOVİD-19 TESPİTİ

Fatma Zehra SOLAK
{"title":"VARYASYONEL MOD AYRIŞTIRMASIYLA ÖKSÜRÜK SESLERİNDEN KOVİD-19 TESPİTİ","authors":"Fatma Zehra SOLAK","doi":"10.36306/konjes.1110235","DOIUrl":null,"url":null,"abstract":"According to the World Health Organization, cough is one of the most prominent symptoms of the COVID-19 disease declared as a global pandemic. The symptom is seen in 68% to 83% of people with COVID-19 who come to the clinic for medical examination. Therefore, during the pandemic, cough plays an important role in diagnosing of COVID-19 and distinguishing patients from healthy individuals. This study aims to distinguish the cough sounds of COVID-19 positive people from those of COVID-19 negative, thus providing automatic detection and support for the diagnosis of COVID-19. For this aim, “Virufy” dataset containing cough sounds labeled as COVID-19 and Non COVID-19 was included. After using the ADASYN technique to balance the data, independent modes were obtained for each sound by utilizing the Variational Mode Decomposition (VMD) method and various features were extracted from every mode. Afterward, the most effective features were selected by ReliefF algorithm. Following, ensemble machine learning methods, namely Random Forest, Gradient Boosting Machine and Adaboost were prepared to identify cough sounds as COVID-19 and Non COVID-19 through classification. As a result, the best performance was obtained with the Gradient Boosting Machine as 94.19% accuracy, 87.67% sensitivity, 100% specificity, 100% precision, 93.43% F-score, 0.88 kappa and 93.87% area under the ROC curve.","PeriodicalId":17899,"journal":{"name":"Konya Journal of Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Konya Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36306/konjes.1110235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the World Health Organization, cough is one of the most prominent symptoms of the COVID-19 disease declared as a global pandemic. The symptom is seen in 68% to 83% of people with COVID-19 who come to the clinic for medical examination. Therefore, during the pandemic, cough plays an important role in diagnosing of COVID-19 and distinguishing patients from healthy individuals. This study aims to distinguish the cough sounds of COVID-19 positive people from those of COVID-19 negative, thus providing automatic detection and support for the diagnosis of COVID-19. For this aim, “Virufy” dataset containing cough sounds labeled as COVID-19 and Non COVID-19 was included. After using the ADASYN technique to balance the data, independent modes were obtained for each sound by utilizing the Variational Mode Decomposition (VMD) method and various features were extracted from every mode. Afterward, the most effective features were selected by ReliefF algorithm. Following, ensemble machine learning methods, namely Random Forest, Gradient Boosting Machine and Adaboost were prepared to identify cough sounds as COVID-19 and Non COVID-19 through classification. As a result, the best performance was obtained with the Gradient Boosting Machine as 94.19% accuracy, 87.67% sensitivity, 100% specificity, 100% precision, 93.43% F-score, 0.88 kappa and 93.87% area under the ROC curve.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用变异模式分解法检测咳嗽声中的 covid-19
据世界卫生组织称,咳嗽是宣布为全球大流行的COVID-19疾病最突出的症状之一。68%至83%到诊所接受体检的COVID-19患者出现了这种症状。因此,在大流行期间,咳嗽在诊断COVID-19和区分患者与健康个体方面具有重要作用。本研究旨在区分COVID-19阳性人群和COVID-19阴性人群的咳嗽声,从而为COVID-19的诊断提供自动检测和支持。为此,包含咳嗽声音的“Virufy”数据集被标记为COVID-19和非COVID-19。利用ADASYN技术平衡数据后,利用变分模态分解(VMD)方法获得每个声音的独立模态,并从每个模态中提取各种特征。然后,通过ReliefF算法选择最有效的特征。随后,准备了随机森林、梯度增强机和Adaboost集成机器学习方法,通过分类识别咳嗽声为COVID-19和非COVID-19。结果表明,梯度增强机的准确率为94.19%,灵敏度为87.67%,特异性为100%,精密度为100%,f评分为93.43%,kappa为0.88,ROC曲线下面积为93.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GIS-AHP APPROACH FOR A COMPREHENSIVE FRAMEWORK TO DETERMINE THE SUITABLE REGIONS FOR GEOTHERMAL POWER PLANTS IN IZMIR, TÜRKİYE MACHINE WHELL EDGE DETECTION MORPHOLOGICAL OPERATIONS PRODUCTION OF CuO/ZrO2 NANOCOMPOSITES IN POWDER AND FIBER FORMS DETERMINATION BY NUMERICAL MODELING OF STRESS-STRAIN VARIATIONS RESULTING FROM GALLERY CROSS-SECTION CHANGES IN A LONGWALL TOP COAL CAVING PANEL ENCAPSULATION OF VITAMIN D IN THE EXINE-ALGINATE-CHITOSAN MICROCAPSULE SYSTEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1