Investigation of background noise in the GNSS position time series using spectral analysis – A case study of Nepal Himalaya

IF 2.1 Q3 REMOTE SENSING Geodesy and Cartography Pub Date : 2023-11-06 DOI:10.24425/gac.2019.128468
{"title":"Investigation of background noise in the GNSS position time series using spectral analysis – A case study of Nepal Himalaya","authors":"","doi":"10.24425/gac.2019.128468","DOIUrl":null,"url":null,"abstract":"Position time series from permanent Global Navigation Satellite System (GNSS) stations are commonly used for estimating secular velocities of discrete points on the Earth’s surface. An understanding of background noise in the GNSS position time series is essential to obtain realistic estimates of velocity uncertainties. The current study focuses on the investigation of background noise in position time series obtained from thirteen permanent GNSS stations located in Nepal Himalaya using the spectral analysis method. The power spectrum of the GNSS position time series has been estimated using the Lomb–Scargle method. The iterative nonlinear Levenberg–Marquardt (LM) algorithm has been applied to estimate the spectral index of the power spectrum. The power spectrum can be described by white noise in the high frequency zone and power law noise in the lower frequency zone. The mean and the standard deviation of the estimated spectral indices are −1.46±0.14,−1.39±0.16 and −1.53± 0.07 for north, east and vertical components, respectively. On average, the power law noise extends up to a period of ca. 21 days. For a shorter period, i.e. less than ca. 21 days, the spectra are white. The spectral index corresponding to random walk noise (ca. –2) is obtained for a site located above the base of a seismogenic zone which can be due to the combined effect of tectonic and nontectonic factors rather than a spurious monumental motion. Overall, the usefulness of investigating the background noise in the GNSS position time series is discussed.","PeriodicalId":44129,"journal":{"name":"Geodesy and Cartography","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/gac.2019.128468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

Abstract

Position time series from permanent Global Navigation Satellite System (GNSS) stations are commonly used for estimating secular velocities of discrete points on the Earth’s surface. An understanding of background noise in the GNSS position time series is essential to obtain realistic estimates of velocity uncertainties. The current study focuses on the investigation of background noise in position time series obtained from thirteen permanent GNSS stations located in Nepal Himalaya using the spectral analysis method. The power spectrum of the GNSS position time series has been estimated using the Lomb–Scargle method. The iterative nonlinear Levenberg–Marquardt (LM) algorithm has been applied to estimate the spectral index of the power spectrum. The power spectrum can be described by white noise in the high frequency zone and power law noise in the lower frequency zone. The mean and the standard deviation of the estimated spectral indices are −1.46±0.14,−1.39±0.16 and −1.53± 0.07 for north, east and vertical components, respectively. On average, the power law noise extends up to a period of ca. 21 days. For a shorter period, i.e. less than ca. 21 days, the spectra are white. The spectral index corresponding to random walk noise (ca. –2) is obtained for a site located above the base of a seismogenic zone which can be due to the combined effect of tectonic and nontectonic factors rather than a spurious monumental motion. Overall, the usefulness of investigating the background noise in the GNSS position time series is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用频谱分析研究GNSS位置时间序列中的背景噪声-以尼泊尔喜马拉雅地区为例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geodesy and Cartography
Geodesy and Cartography REMOTE SENSING-
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊介绍: THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING FIELDS OF RESEARCH: •study, establishment and improvement of the geodesy and mapping technologies, •establishing and improving the geodetic networks, •theoretical and practical principles of developing standards for geodetic measurements, •mathematical treatment of the geodetic and photogrammetric measurements, •controlling and application of the permanent GPS stations, •study and measurements of Earth’s figure and parameters of the gravity field, •study and development the geoid models,
期刊最新文献
Updating the RF entities’ local coordinate systems, created from CS-95, based on SCS-2011 Obidenko V. I. Siberian State University of Geosystems and Technologies 630108, Russia, Novosibirsk, Plakhotnogo st., 10 ovi62@yandex.ru Development of a draft national standard in the field of geodesy and cartography: topographic monitoring for updating digital (electronic) topographic maps and spatial data Analysis of the state geodetic network development and protection Geoinformation analysis of agroforestry landscapes spatial characteristics Assessment of specially protected areas’ investment attractiveness level to develop ecological tourism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1