Design of Hybrid Precoder for mm-Wave MIMO System Based on Generalized Triangular Decomposition Method

{"title":"Design of Hybrid Precoder for mm-Wave MIMO System Based on Generalized Triangular Decomposition Method","authors":"","doi":"10.24425/ijet.2022.141269","DOIUrl":null,"url":null,"abstract":"—Hybrid precoding techniques are lately involved a lot of interest for millimeter-wave (mmWave) massive MIMO systems is due to the cost and power consumption advantages they provide. However, existing hybrid precoding based on the singular value decomposition (SVD) necessitates a difficult bit allocation to fit the varying signal-to-noise ratios (SNRs) of altered sub-channels. In this paper, we propose a generalized triangular decomposition (GTD)-based hybrid precoding to avoid the complicated bit allocation. The development of analog and digital precoders is the reason for the high level of design complexity in analog precoder architecture, which is based on the OMP algorithm, is very non-convex, and so has a high level of complexity. As a result, we suggest using the GTD method to construct hybrid precoding for mmWave mMIMO systems. Simulated studies as various system configurations are used to examine the proposed design. In addition, the archived findings are compared to a hybrid precoding approach in the classic OMP algorithm. The proposed Matrix Decomposition’s simulation results of signal-to-noise ratio vs spectral efficiencies","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"6 3","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2022.141269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

—Hybrid precoding techniques are lately involved a lot of interest for millimeter-wave (mmWave) massive MIMO systems is due to the cost and power consumption advantages they provide. However, existing hybrid precoding based on the singular value decomposition (SVD) necessitates a difficult bit allocation to fit the varying signal-to-noise ratios (SNRs) of altered sub-channels. In this paper, we propose a generalized triangular decomposition (GTD)-based hybrid precoding to avoid the complicated bit allocation. The development of analog and digital precoders is the reason for the high level of design complexity in analog precoder architecture, which is based on the OMP algorithm, is very non-convex, and so has a high level of complexity. As a result, we suggest using the GTD method to construct hybrid precoding for mmWave mMIMO systems. Simulated studies as various system configurations are used to examine the proposed design. In addition, the archived findings are compared to a hybrid precoding approach in the classic OMP algorithm. The proposed Matrix Decomposition’s simulation results of signal-to-noise ratio vs spectral efficiencies
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义三角分解法的毫米波MIMO系统混合预编码器设计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Optimization of Animal Detection in Thermal Images Using YOLO Architecture Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications 147684 147700
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1